首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
admin
2021-01-19
111
问题
(Ⅰ)证明:对任意的正整数n,都有
成立;
(Ⅱ)设a
n
=1+
-lnn(n=1,2,…),证明数列{a
n
}收敛。
选项
答案
(Ⅰ)令1/n=x,则原不等式可化为[*]<ln(1+x)<x(x>0)。 先证明ln(1+x)<x(x>0)。 令f(x)=x-ln(1+x)。由于f’(x)=1-[*]>0(x>0),可知f(x)在[0,+∞))上单调递增。又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。也即 ln(1+x)<x(x>0)。 再证明[*]<ln(1+x)(x>0)。 令g(x)=ln(1+x)-[*]由于g’(x)=[*]>0(x>0),可知g(x)在[0,+∞)上单调递增。由于g(0)=0,因此当x>0时,g(x)>g(0)=0。也即[*]<ln(1+x)(x>0)。 因此,[*]<ln(1+x)<x(x>0)成立。再令1/n=x,由于n为正整数,即可得到所需证明的不等式。 (Ⅱ)易知a
n+1
-a
n
=[*] 由不等式[*]可知,数列{a
n
}单调递减。 又由不等式ln(1+[*])<1/n可知: [*] =ln(n+1)-lnn>0。 因此数列{a
n
}是有界的。故由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/sN84777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
设函数f(u)具有连续导数,且方程x一z=yf(z2一x2)确定隐函数z=z(x,y),则
设函数f(x)在闭区间[0,1]上可微,且满足λ∈(0,1)为常数.求证:在(0,1)内至少存在一点ξ,使f’(ξ)=一f(ξ)/ξ.
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的7/
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.(Ⅰ)求子弹在铁板内的运动速度v与时间t的函数关系v=v(t);
设f〞(χ)∈C[a,b],证明:存在ξ∈(a,b),使得∫abf(χ)dχ-(b-a)f〞(ξ).
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
随机试题
A.髓袢升支和降支B.近端小管和远端小管C.近端小管和集合管D.远端小管和集合管尿液的浓缩主要发生在
狂言可表现为( )谵语可表现为( )
急性胰腺炎患者,血清钙测定值<1.75mmol/L时,提示
背景资料:某工程业主采用固定单价合同方式招标,与市兴华建筑公司签订了建筑安装工程施工合同。其中有甲、乙两个主要分项工程,清单量分别为甲分项工程2500m3,乙分项工程3500m3。承包商报价中甲分项工程的综合单价为320元/m3,乙分项工程的
采用成本法核算长期股权投资,下列各项中会导致长期股权投资账面价值发生增减变动的有()。
在二行三列的方格棋盘上沿骰子的某一条棱翻滚(向对面分别为1和6,2和5,3和4)。在每一种翻动方式中,骰子不能后退,开始如图1所示,2朝上,最后到图2形式,此时向上的点数不可能是()。
A、思成打开了那台录音机,转动的磁带中,录下了朋友的许多问候。B、河南是华夏文明的发祥地之一,有众多朝代在此建都,历史文化积淀深厚。C、有些人将电视比作家常便饭,而视电影为大餐。D、这看起来固然好笑,但它说明古印度人已知道情绪的秘密。AA。多层定语
Lazinessisasin,everyoneknowsthat.Wehaveprobablyallhadlecturespointingoutthatlazinessis【B1】______,thatitisw
It’sofficialthatmarriedpeoplearehealthier,oratleasttheythinktheyare.AnAmerican【B1】______ofover100,000peoples
Iboughtalargeboxoffastnoodlesthinking______(它能够我一个星期吃的).
最新回复
(
0
)