首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
admin
2021-01-19
119
问题
(Ⅰ)证明:对任意的正整数n,都有
成立;
(Ⅱ)设a
n
=1+
-lnn(n=1,2,…),证明数列{a
n
}收敛。
选项
答案
(Ⅰ)令1/n=x,则原不等式可化为[*]<ln(1+x)<x(x>0)。 先证明ln(1+x)<x(x>0)。 令f(x)=x-ln(1+x)。由于f’(x)=1-[*]>0(x>0),可知f(x)在[0,+∞))上单调递增。又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。也即 ln(1+x)<x(x>0)。 再证明[*]<ln(1+x)(x>0)。 令g(x)=ln(1+x)-[*]由于g’(x)=[*]>0(x>0),可知g(x)在[0,+∞)上单调递增。由于g(0)=0,因此当x>0时,g(x)>g(0)=0。也即[*]<ln(1+x)(x>0)。 因此,[*]<ln(1+x)<x(x>0)成立。再令1/n=x,由于n为正整数,即可得到所需证明的不等式。 (Ⅱ)易知a
n+1
-a
n
=[*] 由不等式[*]可知,数列{a
n
}单调递减。 又由不等式ln(1+[*])<1/n可知: [*] =ln(n+1)-lnn>0。 因此数列{a
n
}是有界的。故由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/sN84777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
设函数f(x)在闭区间[0,1]上可微,且满足λ∈(0,1)为常数.求证:在(0,1)内至少存在一点ξ,使f’(ξ)=一f(ξ)/ξ.
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.(Ⅰ)求子弹在铁板内的运动速度v与时间t的函数关系v=v(t);
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
数列极限I=n2[arctan(n+1)—arctann]=___________.
随机试题
德国人的早餐比较简单,以面包、奶酪、牛奶为主;午饭是主餐,喜欢吃肉;重视晚餐。()
患牙有深牙周袋,但牙髓活力正常应因牙髓病变引起牙周病变,如病程短应
河源县公安局在对张某的抢夺案侦查终结时发现陈某另有强奸嫌疑。但此时对陈某的侦查羁押期限已届满。鉴于须对该强奸案进行侦查,公安局决定对张某继续羁押,并重新计算侦查羁押期限。此时公安局应如何履行法律手续?()
根据《城乡规划法》的规定,可以修改规划的条件是()
【背景资料】某汽车生产线设备安装工程,施工总承包方项目经理部的项目经理负责编制了工程施工组织总设计,编制过程中是以分部工程项目为对象进行编制的,编制完成后提交监理工程师。该设备基础工程施工完成后,施工总承包方对设备基础进行了检验。其主要
根据成本运行规律,成本管理责任体系应包括()。
直方图分布区间的宽窄是由质量特性统计数据的()所决定的。
甲企业和乙企业共同使用面积为10000平方米的土地,甲食业使用其中的60%,乙企业使用其中的40%。除此之外,经有关部门的批准,乙企业在2008年1月份新征用耕地6000平方米。甲乙企业共同使用土地所处地段的城镇土地使用税年税额为4元/平方米,乙企业新征用
与长远目标相联系的一类动机,具有较高的稳定性和持久性,可称为()。
Susan:I’msogladtoseeyou,David.【K1】______hasbeensuchalongtime.Howareyou?David:I’mfine,andyou?Susan:I’mjus
最新回复
(
0
)