首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
admin
2021-01-19
73
问题
(Ⅰ)证明:对任意的正整数n,都有
成立;
(Ⅱ)设a
n
=1+
-lnn(n=1,2,…),证明数列{a
n
}收敛。
选项
答案
(Ⅰ)令1/n=x,则原不等式可化为[*]<ln(1+x)<x(x>0)。 先证明ln(1+x)<x(x>0)。 令f(x)=x-ln(1+x)。由于f’(x)=1-[*]>0(x>0),可知f(x)在[0,+∞))上单调递增。又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。也即 ln(1+x)<x(x>0)。 再证明[*]<ln(1+x)(x>0)。 令g(x)=ln(1+x)-[*]由于g’(x)=[*]>0(x>0),可知g(x)在[0,+∞)上单调递增。由于g(0)=0,因此当x>0时,g(x)>g(0)=0。也即[*]<ln(1+x)(x>0)。 因此,[*]<ln(1+x)<x(x>0)成立。再令1/n=x,由于n为正整数,即可得到所需证明的不等式。 (Ⅱ)易知a
n+1
-a
n
=[*] 由不等式[*]可知,数列{a
n
}单调递减。 又由不等式ln(1+[*])<1/n可知: [*] =ln(n+1)-lnn>0。 因此数列{a
n
}是有界的。故由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/sN84777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(1)求的值;(2)计算极限
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
函数F(χ)=(χ∈(-∞,+∞))的值域区间是_______.
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
一子弹穿透某铁板,已知入射子弹的速度为v0,穿出铁板时的速度为v1,以子弹入射铁板时为起始时间,又知穿透铁板的时间为t1.子弹在铁板内的阻力与速度平方成正比,比例系数k>0.(Ⅰ)求子弹在铁板内的运动速度v与时间t的函数关系v=v(t);
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
随机试题
Iaskedherifshewouldattendthepartytobeheldthenextweek,butshemadeno________.
________是由国家制定或认可的具体规定权利、义务及法律后果的行为准则。
蛋白质的特征性元素是______。
对缺铁性贫血和铁粒幼细胞性贫血鉴别最有价值的指标是
糖尿病的基本病理生理变化是
女性,22岁,孕18周,性交后一周出现白带多,脓性,伴尿频、尿急、尿道烧灼感1天。妇科检查:尿道口红肿、充血,有脓性分泌物流出,阴道内见大量脓性分泌物,宫颈光滑、充血、水肿,有脓性分泌物流出,子宫附件无压痛。宫颈分泌物涂片较多多形核白细胞,并在多形核白细胞
长期服用抗甲状腺药甲硫氧嘧啶,需要监测的实验室数据是
按照监管要求,从业人员在推荐产品时应充分提示的风险包括()。
下列四项中,不属于“对文化传统的误读”的一项是:根据文中史料所提供的信息,以下推断正确的一项是:
Thefirstmoderndigitalcomputersweredevelopedinthe1940sformilitarypurposesthataroseduringWorldWarII.Thesecomp
最新回复
(
0
)