首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
(Ⅰ)证明:对任意的正整数n,都有成立; (Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
admin
2021-01-19
102
问题
(Ⅰ)证明:对任意的正整数n,都有
成立;
(Ⅱ)设a
n
=1+
-lnn(n=1,2,…),证明数列{a
n
}收敛。
选项
答案
(Ⅰ)令1/n=x,则原不等式可化为[*]<ln(1+x)<x(x>0)。 先证明ln(1+x)<x(x>0)。 令f(x)=x-ln(1+x)。由于f’(x)=1-[*]>0(x>0),可知f(x)在[0,+∞))上单调递增。又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。也即 ln(1+x)<x(x>0)。 再证明[*]<ln(1+x)(x>0)。 令g(x)=ln(1+x)-[*]由于g’(x)=[*]>0(x>0),可知g(x)在[0,+∞)上单调递增。由于g(0)=0,因此当x>0时,g(x)>g(0)=0。也即[*]<ln(1+x)(x>0)。 因此,[*]<ln(1+x)<x(x>0)成立。再令1/n=x,由于n为正整数,即可得到所需证明的不等式。 (Ⅱ)易知a
n+1
-a
n
=[*] 由不等式[*]可知,数列{a
n
}单调递减。 又由不等式ln(1+[*])<1/n可知: [*] =ln(n+1)-lnn>0。 因此数列{a
n
}是有界的。故由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/sN84777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(1)求的值;(2)计算极限
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
设函数f(u)具有连续导数,且方程x一z=yf(z2一x2)确定隐函数z=z(x,y),则
函数F(χ)=(χ∈(-∞,+∞))的值域区间是_______.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的7/
设f〞(χ)∈C[a,b],证明:存在ξ∈(a,b),使得∫abf(χ)dχ-(b-a)f〞(ξ).
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
数列极限I=n2[arctan(n+1)—arctann]=___________.
随机试题
单井罐量油又分为()和量实高两种。
在一定压力下操作的工业沸腾装置,为使有较高的传热系数,常采用膜状沸腾。()
下列不用于初级生产力测定的方法是()
含水率为5%的砂220kg,将其干燥后,质量应为( )。
土地利用年度计划根据( )的实际状况编制。
从业主的角度看,传统的工程项目发包模式(设计—招标—建造模式)的主要优点是()。
下列关于紧靠防火墙门,窗,洞口的做法,不符合《高层民用建筑设计防火规范》GB50045规定的是()。
消费者协会是对商品和服务进行社会监督的保护消费者合法权益的()。
Google,thedominantInternetsearchcompany,isplanningtoraisethestakesinitsintensifyingcompetitionwithYahooandMic
Forebookdevotees,readingisawholenewexperienceDavidJ.Loehr,aplaywrightwholivesinsouthernIndiana,wastaking
最新回复
(
0
)