首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2018-05-22
59
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,可设k
2
≠0,所以Aα=[*],矛盾,所以α,Aα线性无关. (2)由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得(3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/YSk4777K
0
考研数学二
相关试题推荐
(1999年试题,一)函数在区间上的平均值为__________.
(2008年试题,一)设函数f(x)连续,.其中区域Duv为图1-5-1,阴影部分,则().
(2005年试题,三(22))确定常数α,使向量组α1=(1,1,α)T,α2=(1,α2,1)T,α3=(α,1,1)T可由向量组β1=(1,1,α)T,β2=(一2,α,4)T,β3=(一2,α,α)T线性表示,但是向量组β1β2,β3不能由向量组α1
(2006年试题,二)设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是().
(2012年试题,一)设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
(1998年试题,二)设函数f(x)在x=a的某个领域内连续,且f(x)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有().
(1999年试题,二)设f(x)是连续函数,F(x)是f(x)的原函数,则().
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
计算二重积分,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成.
2∫-∞atetdt=∫-∞atd(t)=tet|-∞a-∫-∞aetdt=aea-ea由ea=aea-ea得a=2
随机试题
关系模型的特点不包括()
脊髓位于________内,上端在枕骨大孔处连接脑的________;下端成年人约平第________腰椎体下缘。
幼儿对住院反应的主要护理措施,错误的是()
A.凹逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤和解少阳,内泻热结的代表方剂是
肉瘤的特点是
A.转移癌B.恶性癌C.交界癌D.癌前病变E.早期癌黑色素瘤属于
效力未定的民事行为的类型包括( )。
下列关于广告主广告部门的职能,说法错误的是()。
2014年7月1日开始实施的《事业单位人事管理条例》指出,对事业单位人员的处分包括:
Thenatureoflightisnotwhollyknown,butitisgenerallybelievedtobematter,asinits(1)______,itobeysthelaws(2)____
最新回复
(
0
)