首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. (1)证明α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2018-05-22
39
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,可设k
2
≠0,所以Aα=[*],矛盾,所以α,Aα线性无关. (2)由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得(3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/YSk4777K
0
考研数学二
相关试题推荐
(2012年试题,三)计算二重积分,其中区域D为曲线r=1+cosθ(0≤θ≤π)与极轴围成
(2002年试题,三)已知曲线的极坐标方程是r=1—cosθ,求该曲线上对应于处的切线与法线的直角坐标方程.
(1998年试题,七)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度),(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力的作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水密度为
(2010年试题,14)设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
在下列微分方程中,以y=C1ex+C22cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是
设函数.(1)求f(x)的最小值;(2)设数列{xn}满足,证明存在,并求此极限.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(-1)f〞(χ)-χf′(χ)=eχ-1,则下列说法正确的是
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
下列说法正确的是().
随机试题
满园中播散着熨帖而微苦的味道。
在资产评估中,市场法一般不适宜用于()的评估。
根据《商业银行法》的规定,银行的核心资本不得()银行资本的()。
某企业盈余公积年初余额为50元,本年利润总额为600万元,所得税费用为150万元,按净利润的10%提取法定盈余公积,并将盈余公积10万元转增资本。该企业盈余公积年末余额为()万元。
茶是一种著名的保健饮品,中国人自古就有饮茶的习惯。下列与其相关的说法中,正确的是()。
教师所具有的教育学、心理学的学科知识是本体性知识。()
选择和运用教学方法的基本依据是()。
明代官员李汰曾任朝廷主考官,有一年他在福建主持科举考试。一天深夜,有位求情者送了一包沉甸甸的黄金,请他给予通融,当即遭到李汰的回绝。李汰挥笔写下了一首表露心迹的拒贿诗:“义利源头识颇真,黄金难换腐儒心。莫言暮夜无知者,须知乾坤有鬼神。”这段故事给了你什么启
100,25,4,25/4,()
一个4岁的儿童,通过了5岁组的智力测验题目,其智商是()
最新回复
(
0
)