首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B
admin
2014-01-26
85
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量.
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得 A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=α
1
—4α
1
+α
1
=-2α
1
, 从而α
1
是矩阵B的属于特征值-2的特征向量. 由B=A-4A+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2,得B的3个特征值为 μ
1
=-2,μ
2
—1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又因为A是对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即 α
1
T
α
2
=0, α
1
T
α
3
=0, 所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解: [*] 其基础解系为[*],故可取[*]。 故B的全部特征值的特征向量为:[*],其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数. (2)方法一 令P=(α
1
,α
2
,α
3
)=[*], 得[*] 方法二 将α
2
,α
3
正交化得β
2
=α
2
=[*] [*] 将α
1
,β
2
,β
3
单位化得[*] 令[*] 则 P
-1
BP=P
T
BP=[*] 故[*]
解析
[分析]根据特征值的性质可立即得B的特征值,然后由B也是对称矩阵可求出其另外两个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/cm34777K
0
考研数学二
相关试题推荐
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
(04年)函数f(χ)=在下列哪个区间内有界:【】
[2018年]下列函数中,在x=0处不可导的是()
[2007年]设线性方程组(I)与方程(Ⅱ):x1+2x2+x3=a-1.有公共解.求a的值与所有公共解.
[2016年]设函数f(x)连续,且满足求f(x).
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
[2009年]设对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2004年)设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明:∫abxf(x)dx≤∫abxg(x)dx。
随机试题
急性白血病与骨髓增生异常综合征的重要区别是
左氧氟沙星具有哪些结构特征和作用特点
根据《农村土地承包法》规定,下列关于机动地问题,表述不正确的是():
根据《建筑抗震设计规范》(GB50011—2001)。当(见图)()时属于结构平面不规则。
现行财务制度规定,施工企业计提折旧一般采用()。
【给定资料一】如今在中国常看到这样的场景:出门上班前,通过打车软件叫一辆车;坐在车上,通过手机浏览最新最火的帖子;下班回家太累不想做饭,通过APP请一位厨艺达人到家做饭;消费者在支付终端前摇晃手机或通过扫描二维码完成交易……调查显示,中
朝鲜历史上最大的一次农民战争是()。
Americanethnocentricity,whilemanifestingeneralattitudestowardothersis,ofcourse,temperedsomewhatbytheveryheterog
算法的时间复杂度是指()。
Thispassageismostprobablyintendedfor
最新回复
(
0
)