首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B
admin
2014-01-26
59
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量.
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得 A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=α
1
—4α
1
+α
1
=-2α
1
, 从而α
1
是矩阵B的属于特征值-2的特征向量. 由B=A-4A+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2,得B的3个特征值为 μ
1
=-2,μ
2
—1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又因为A是对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即 α
1
T
α
2
=0, α
1
T
α
3
=0, 所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解: [*] 其基础解系为[*],故可取[*]。 故B的全部特征值的特征向量为:[*],其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数. (2)方法一 令P=(α
1
,α
2
,α
3
)=[*], 得[*] 方法二 将α
2
,α
3
正交化得β
2
=α
2
=[*] [*] 将α
1
,β
2
,β
3
单位化得[*] 令[*] 则 P
-1
BP=P
T
BP=[*] 故[*]
解析
[分析]根据特征值的性质可立即得B的特征值,然后由B也是对称矩阵可求出其另外两个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/cm34777K
0
考研数学二
相关试题推荐
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
[2016年]设函数f(x)连续,且满足求f(x).
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(2012年)由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为______。
(2012年)证明:一1<x<1。
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
(14年)证明n阶矩阵相似.
随机试题
下列哪种情况下可以给予实施发明专利或者实用新型专利的强制许可?()
患者,男性,25岁。既往体健,晨起时发现双下肢无力,不能行走。查体:神志清,血压120/60mmHg,心率90次/分,双上肢肌力4级,双下肢肌力1级,肌张力低,双侧腱反射消失,血K+2.3mmol/L,Na+140mmol/L。最可能的诊断是
女性,22岁,自觉右侧锁骨上窝处囊性肿块到医院就诊。CT增强扫描如图所示,最可能的诊断是
女性,28岁,农民,3个月来咳嗽、咳少量白痰,伴乏力、低热、食欲下降,体重减轻6kg,月经不规律。体检发现左颈部可及2个黄豆大小淋巴结,质软、活动。胸片发现右上肺不均质片状阴影及肺门钙化影。若痰涂片找抗酸杆菌阳性,应首先给予下列哪种措施最适宜
已知,则f(x)在(0,π)内的正级数的和函数s(x)在处的值及系数b3分别为()。
根据法律规定,限制民事行为能力人订立的合同在()情况下是有效的。
人才尤其是杰出人才之所以难得,不是因为没有,而是因为凡眼不识、世俗不容。创造性人才的一个突出特点,就是不简单认同既成的事实,不拘泥于固定的想法,具有求异思维和批判精神。他们敢于打破常规,挑战权威,不按常理行事,不按规矩出牌,“扰乱”了现有的秩序,因而不易得
填入横线上最恰当的一项是:梅尧臣的诗句“梅须逊雪三分白,雪却输梅一段香”,常被后人引用,借以说明______。
Afterthe1884ThirdReformActand1885RedistributionAct,allofthefollowinggotthevoteEXCEPT______.
Onmeasuresofmentalsharpness,olderpeoplewhoatemorethantwoservingsofvegetablesdailyappeared____________(比那些很少吃或根本不
最新回复
(
0
)