首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设矩阵A=,B=P-1A*P.求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
[2003年] 设矩阵A=,B=P-1A*P.求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
admin
2021-01-19
126
问题
[2003年] 设矩阵A=
,B=P
-1
A
*
P.求B+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为3阶单位矩阵.
选项
答案
利用A的特征值、特征向量和相关联矩阵特征值、特征向量的关系间接求出B+2E的特征值、特征向量.第二种方法是先求出矩阵A
*
,再利用相似关系直接求出B+2E的特征值、特征向量.后者计算量较大. 解一 因a=3,b=2,由命题2.5.1.7知,A的三个特征值分别为 λ
1
=λ
2
=a一b=l, λ
3
=a+(n一1)b=3+(3—1)2=7. 又由命题2.5.2.1知∣A∣=λ
1
λ
2
λ
3
=1×l×7=7.于是A
*
的三个特征值为 λ
1
*
=∣A∣/λ
1
=7, λ
2
*
=∣A∣/λ
2
=7, λ
3
*
=∣A∣/λ
3
=1. 因B~A
*
,故B的三个特征值为μ
1
=λ
1
*
=7,μ
2
=λ
2
*
=7,μ
3
=λ
3
*
=1.于是B+2E的三个特征值分别为9,9,3. 先求出A的属于特征λ
1
=λ
2
=l及λ
3
=7的特征向量.因 λ
1
E一A=E—A=[*] 故A的属于λ
1
=λ
2
=l的特征向量分别为η
1
=[一1,1,0]
T
,η
2
=[一1,0,1]
T
.而 λ
3
E一A=7E一A=[*] 故A的属于λ
3
=7的特征向量为η
3
=[1,1,1]
T
.于是A
*
的属于特征值 λ
1
*
=λ
2
*
=7, λ
3
*
=1的特征向量与A的对应特征向量相同,分别为η
1
,η
2
,η
3
. 于是,B的属于特征值μ
1
=μ
2
=7的特征向量可取为 β
1
=P
-1
η
1
=[*], β
2
=P
-1
η
2
=[*]; B的属于特征值μ
3
=l的特征向量可取为 β
3
=P
-1
η
3
=[*] 故B+2E的特征值分别为9,9,3,属于特征值9(二重特征值)的全部特征向量为 k
1
β
1
+k
2
β
2
=k
1
[1,一1,0]
T
+k
2
[一1,一1,1]
T
,其中k
1
,k
2
不同时为零. B+2E的属于特征值3的全部特征向量为k
3
β
3
=k
3
[0,1,1]
T
,其中k
3
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/YV84777K
0
考研数学二
相关试题推荐
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2.(Ⅰ)证明:α1,α2正交.(Ⅱ)求AX=α2的通解.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
设n阶方阵A的n个特征值全为0,则().
设A为三阶非零方阵,而且AB=0,则t=().
设函数f(x)有三阶导数,且=1,则()
设A是n阶矩阵,且A的行列式|A|=0,则A().
求极限=_______.
(2008年试题,一)设f(x)=x2(x一1)(x一2),则f(x)的零点个数为().
随机试题
油光锉的锉刀型号表示方法是()。
注意的品质特性有哪些?
下列大肠癌手术式中,属于姑息性手术的是
(2016年)《全国人民代表大会常务委员会关于
企业投资项目需要备案的内容有()
建设工程监理的主要任务是()。
(2017真题)小军由于“锐角三角形”知识掌握不好而影响了“钝角三角形”知识的掌握,这种现象属于()。
A、相似且合同B、相似不合同C、合同不相似D、不合同也不相似C由|λE-A|=0得A的特征值为1,3,一5,由|λE-B|=0得B的特征值为1,1,一1,所以A与B合同但不相似,选(C).
ItwasClark’sfirstvisittoLondonUndergroundRailway.Against【C1】______adviceofhisfriends,hedecidedtogothereafter
【B1】【B7】
最新回复
(
0
)