首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
admin
2019-06-28
78
问题
已知α
1
,α
2
,α
3
是齐次线性方程组Ax=0的一个基础解系,证明α
1
+α
2
,α
2
+α
3
,α
1
+α
3
也是该方程组的一个基础解系.
选项
答案
由A(α
1
+α
2
)=Aα
1
+Aα
2
=0+0=0知,α
1
+α
2
是齐次方程组Ax=0的解.同理可知α
2
+α
3
,α
1
+α
3
也是Ax=0的解.设k
1
(α
1
+α
2
)+k
2
(α
2
+α
3
)+k
3
(α
1
+α
3
)=0,即(k
1
+k
3
)α
1
+(k
1
+k
2
)α
2
+(k
2
+k
3
)α
3
=0,因为α
1
,α
2
,α
3
是基础解系,它们是线性无关的,故[*]由于此方程组系数行列式[*]故必有k
1
=k
2
=k
3
=0,所以α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性无关.根据题设,Ax=0的基础解系含有3个线性无关的向量,所以α
1
+α
3
,α
2
+α
3
,α
1
+α
3
是方程组Ax=0的一组基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/pdV4777K
0
考研数学二
相关试题推荐
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求A2;
当x=______时,函数y=x.2x取得极小值.
=__________
设函数=_______
设f(x)是连续函数,且f(t)dt=x,则f(7)=______.
设A是3阶实对称矩阵,特征值分别为0,1,2,如果特征值0和1对应的特征向量分别为α1=(1,2,1)T,α2=(1,一1,1)T,则特征值2对应的特征向量是_________.
设矩阵A=,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=________。
求初值问题的解。
已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l。若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______。
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕z轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(x);(2)f(x)的极值.
随机试题
“叫她黑牡丹”中的“黑牡丹”在句中充当的句子成分是_____。
台阁体
在丙米嗪作用中,下列哪一项是错误的
A.神经根炎B.手-足-口病C.心肌炎D.出血热E.急性出血性结膜炎肠道病毒71型感染主要导致
下列心律失常中哪项不伴有心悸症状
可引起人畜共患病的病原菌是
一起共同抢劫案件,被告人张某被判处有期徒刑5年,被告人王某被判处有期徒刑1年。在一审宣判后,张某当即表示上诉,王某则表示不上诉,人民检察院没有抗诉。请根据案情回答问题。 本案中,由于被告人张某提起了上诉,第二审程序便正式启动了。在第二审的审理中,下列哪
甲公司是一家制造业上市公司,拥有一条由厂房、专利权、设备A、设备B、设备C和设备D所组成的生产线,专门用于生产新产品乙。乙产品具有活跃的市场。甲公司的固定资产采用年限平均法计提折旧,无形资产采用直线法摊销。资料一:厂房、专利权以及生产线的有关资料如下:
古希腊提出问答法的哲学家和思想家是______。
A、Becauseitwasherafter-schoolassignment.B、BecauseshewasaPsychologymajor.C、BecauseshewascuriousaboutFreud.D、Bec
最新回复
(
0
)