首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是满足AB=O的任意两个非零阵,则必有( ).
设A,B是满足AB=O的任意两个非零阵,则必有( ).
admin
2019-01-14
30
问题
设A,B是满足AB=O的任意两个非零阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
设A,B分别为m×n及n×s矩阵,因为AB=O,所以r(A)+r(B)≤n,因为A,B为非零矩阵,所以r(A)≥1,r(B)≥1,从而r(A)<n,r(B)<n,故A的列向量组线性相关,B的行向量组线性相关,选(A).
转载请注明原文地址:https://kaotiyun.com/show/YkM4777K
0
考研数学一
相关试题推荐
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T,β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设f(x)在(a,b)内可导,且∈(a,b)使得f’(x)=又f(x0)>0(x<0),(如图4.12),求证:f(x)在(a,b)恰有两个零点.
设数列{nan}收敛,级数n(an一an-1)收敛(不妨设其中a0=0),证明:级数收敛.
求I=D由曲线x2+y2=2x+2y一1所围成.
求下列微分方程的通解或特解:(I)一4y=4x2,y(0)=,y’(0)=2;(Ⅱ)+2y=e—xcosx.
设f(x)=g(x)=0,f*(x)=(x)=0,且f(x)~f*(x),g(x)~g*(x)(x→a).(I)当x→a时无穷小f(x)与g(x)可比较,不等价(=r≠1,或=∞),求证:f(x)-g(x)~f*(x)-g*(x)(x→a);(II)
设f(x)=是连续函数,求a,b的值.
设X1,X2,…,xN是来自正态总体X~N(μ,σ2)的简单随机样本,为使D=成为总体方差的无偏估计量,则应选k为().
随机试题
结合实际,论述我国行政职能转变的必然性及其主要内容。
下列关于桂枝汤煎服方法的叙述中,符合《伤寒论》原方要求的是
患者,男,21岁。6周前踢足球时扭伤左膝,疼痛至今未愈,行走时常有弹响和交锁。最佳的辅助检查是
下列性质属于湿邪特性的是
A.管间侧支B.根管侧支C.根尖分歧D.根尖分叉E.侧孔发自根管的细小分支,与根管成垂直角度,贯穿牙本质和牙骨质通向牙周膜的结、构称为
毒毛花苷K的主要药理作用有( )。
沙盘游戏被正式创立后,早期主要用于()。
在学习氯气的相关性质时,学习完物理性质教师没有马上学习化学性质,而是以快问快答的形式来检验学生对氯气物理性质的掌握情况,这种评价方式属于()。
孩子过多玩网络游戏,父母应适当加以______。
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,两个条件联合起来也不充分
最新回复
(
0
)