首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,十二)设总体X服从正态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为求统计量的数学期望E(Y).
(2001年试题,十二)设总体X服从正态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为求统计量的数学期望E(Y).
admin
2019-05-16
36
问题
(2001年试题,十二)设总体X服从正态分布N(μ,σ
2
)(σ>0),从该总体中抽取简单随机样本X
1
,X
2
,…,X
2n
(n≥2),其样本均值为
求统计量
的数学期望E(Y).
选项
答案
由题设所给统计量[*]的结构特点,可视(X
1
+X
n+1
),(X
2
+X
n+2
),…,(X
n
+X
2n
)为取自总体N(2μ,2σ
2
)的简单随机样本,则该样本均值为[*]且有样本方差为[*]由于已知[*],因此E(Y)=(n—1)(2σ
2
)=2(n一1)σ
2
解析二设[*]则[*],因此[*]解析三设Z=X
i
+X
n+i
,i=1,2,…,n.因为X
1
,X
2
,…,X
n
(n≥2)相互独立且同服从正态分布N(μ,σ
2
)(σ>0),所以Z
1
,Z
2
,…,Z
n
也相互独立且服从正态分布.E(Z
i
)=E(X
i
+X
n+i
)=E(X
i
)+E(X
n+i
)=2μ,D(Z
i
)=D(X
i
+X
n+i
)=D(X
i
)+D(X
n+i
)=2σ
2
,即有Z
i
一N(2μ,2σ
2
),i=1,2,…,n.从而Z
n
,Z
2
,…,Z
n
可视为取从总体N(2μ,2σ
2
)的简单随机样本,进而有:[*]故[*]又[*]则[*]即有E(Y)=2(n一1)σ
2
[解析四]因为X
1
,X
2
,…,X
n
(n≥2)相互立且同服从正态分布N(μ,σ
2
)(σ>0),所以有:g(X
i
)=μ,D(X
i
)=σ
2
,E(X
i
2
)=D(X
i
)+E
2
(X
i
)=σ
2
+μ
2
,i=1,2,…,2n;[*]又[*]故而[*]
解析
解析中的几种解法包括直接计算的(解析四)、利用样本方差性质的(解析一)、利用随机变量的独立性的(解析二)和利用x
2
分布的构成与性质的(解析三).总体来讲,直接计算的计算量最大,也最容易出错,也是最容易想到的而其他几种解法则要求考生熟练掌握相关的知识点,会灵活运用.
转载请注明原文地址:https://kaotiyun.com/show/Ync4777K
0
考研数学一
相关试题推荐
=_________.
[*]
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=e4πt2+,则f(t)_________.
设随机变量X,Y,Z相互独立,且X~U[一1,3],Y~B,Z~N(1,32),且随机变量U=X+zY-3Z+2,则D(U)=__________
交换二次积分的积分次序=_______。
回答下列问题设A,X均是2阶方阵,E是2阶单位阵,证明矩阵方程AX一XA=E无解.
微分方程满足y(0)=1/2的特解是y=_________.
回答下列问题记,证明AAT是正定矩阵.
设总体X的概率密度为其中θ为未知参数.X1,X2,…,Xn为来自该总体的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2.…,Xn为来自总体X的简单随机样本.(Ⅰ)求θ的矩估汁量;(Ⅱ)求θ的最大似然估计量.
随机试题
关于经皮吸收制剂的概念和特点的叙述中正确的是()
下列关于契税的表述,正确的是()。
如何认定侵害名誉权责任()。
社会主义法治的根本保证是()。
下列不属于民法调整的社会关系的是()。
以下哪一项不是智者在教育史上的贡献?()
下列成语中,加下划线字的意义全不相同的一组是:
社会主义时期民族问题的实质是
随着人类改造自然能力的不断增强,人类对地球家同造成的破坏性影响也越来越严重,人们通过“地球日”、“地球一小时”等活动唤醒公众的环保意识,是因为()
Itisnotyetknown______(机器人是否有一天能拥有像人一样的视力).
最新回复
(
0
)