首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,十二)设总体X服从正态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为求统计量的数学期望E(Y).
(2001年试题,十二)设总体X服从正态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为求统计量的数学期望E(Y).
admin
2019-05-16
50
问题
(2001年试题,十二)设总体X服从正态分布N(μ,σ
2
)(σ>0),从该总体中抽取简单随机样本X
1
,X
2
,…,X
2n
(n≥2),其样本均值为
求统计量
的数学期望E(Y).
选项
答案
由题设所给统计量[*]的结构特点,可视(X
1
+X
n+1
),(X
2
+X
n+2
),…,(X
n
+X
2n
)为取自总体N(2μ,2σ
2
)的简单随机样本,则该样本均值为[*]且有样本方差为[*]由于已知[*],因此E(Y)=(n—1)(2σ
2
)=2(n一1)σ
2
解析二设[*]则[*],因此[*]解析三设Z=X
i
+X
n+i
,i=1,2,…,n.因为X
1
,X
2
,…,X
n
(n≥2)相互独立且同服从正态分布N(μ,σ
2
)(σ>0),所以Z
1
,Z
2
,…,Z
n
也相互独立且服从正态分布.E(Z
i
)=E(X
i
+X
n+i
)=E(X
i
)+E(X
n+i
)=2μ,D(Z
i
)=D(X
i
+X
n+i
)=D(X
i
)+D(X
n+i
)=2σ
2
,即有Z
i
一N(2μ,2σ
2
),i=1,2,…,n.从而Z
n
,Z
2
,…,Z
n
可视为取从总体N(2μ,2σ
2
)的简单随机样本,进而有:[*]故[*]又[*]则[*]即有E(Y)=2(n一1)σ
2
[解析四]因为X
1
,X
2
,…,X
n
(n≥2)相互立且同服从正态分布N(μ,σ
2
)(σ>0),所以有:g(X
i
)=μ,D(X
i
)=σ
2
,E(X
i
2
)=D(X
i
)+E
2
(X
i
)=σ
2
+μ
2
,i=1,2,…,2n;[*]又[*]故而[*]
解析
解析中的几种解法包括直接计算的(解析四)、利用样本方差性质的(解析一)、利用随机变量的独立性的(解析二)和利用x
2
分布的构成与性质的(解析三).总体来讲,直接计算的计算量最大,也最容易出错,也是最容易想到的而其他几种解法则要求考生熟练掌握相关的知识点,会灵活运用.
转载请注明原文地址:https://kaotiyun.com/show/Ync4777K
0
考研数学一
相关试题推荐
设f(x)=ke-x2+2x-3(-∞<x<+∞)是一概率密度,则k=________.
=_________.
=________.
点(1,2,1)到平面x+2y+2z-13=0的距离是________
袋中有8个球,其中有3个白球,5个黑球.现从中随意取出4个球,如果4个球中有2个白球2个黑球,试验停止,否则将4个球放回袋中重新抽取4个球,直至取到2个白球2个黑球为止.用X表示抽取次数,则P{X=k}=_____(k=1,2,…).
设总体X的概率分布为(0
回答下列问题记,证明AAT是正定矩阵.
回答下列问题求出(Ⅰ)中η关于x的函数具体表达式η=η(x),并求出当0<x<+∞时函数η(x)的值域.
二维随机变量(X,Y)在(1,1),(1,一1),(0,0)三点组成的三角形区域D上服从二维均匀分布,令U=讨论U,V是否独立;
随机试题
变压器各主要参数是什么?
50kg体重的正常人的体液与血量分别为()
“系统的功能不是各个要素简单的叠加,而是大于各个个体的功效之和”描述的是系统的
A.手之阳经与手之阴经B.手之阳经与足之阳经C.手之阴经与足之阴经D.足之阳经与足之阴经E.手之阳经与足之阴经
有内在拟交感活性的B受体阻滞剂是
冰箱:肉类:蔬菜
开头部分加点的“它”所指代的是哪一项:“强子也有结构”,强子结构是由:
分组交换可以采用虚电路方式或(26)方式实现。虚电路方式在通信前需建立一条虚电路,其路径由(27)决定。每条虚电路都有虚电路号码,该号码(28)。虚电路建立后,各数据分组(29)到达目的地,然后(30)。
“先工作后判断”的循环程序结构中,循环体执行的次数最少是( )次。
在考生文件夹下,打开文档word1.docx,按照要求完成下列操作并以该文件名(word1.docx)保存文档。【文档开始】赵州桥在河北省赵县有一座世界闻名的石拱桥,叫赵州桥,又叫安济桥。它是隋朝的石匠李春设计并参加建造的,到现在已经有1300多年了
最新回复
(
0
)