首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α2,α3,α4线
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α2,α3,α4线
admin
2017-10-21
29
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为.
选项
答案
①,③,④.
解析
①直接从定理3.2得到.
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,f而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/YpH4777K
0
考研数学三
相关试题推荐
求
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设A是n阶正定矩阵,证明:|E+A|>1.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P—1AP=B
设A=有三个线性无关的特征向量,求x,y满足的条件.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为,求属于λ2=λ3=2的另一个特征向量.
设求f’(x)并讨论其连续性.
随机试题
试述低钾血症导致代谢性碱中毒的机制。
心室颤动引起阿.斯综合征时,最有效的抢救方法是
某建筑公司承建一座15层商务楼。某日在12层支塑料模壳,焊接罗纹钢时,火星飞溅到塑料模壳上后燃烧起火,引燃铺设在脚手架上的竹芭,因现场无消防器具,造成火灾事故。请分析下列哪些是造成事故的主要原因?()
()是专门用于评估反映人身健康的环境价值评价方法。
账面价值法是指公司资产负债的()。
根据我国《婚姻法》的相关规定,夫妻可以采用约定财产制,夫妻约定财产制的约定方式是()。
某企业每半年存入银行10000元,假定年利息率为6%,每年复利两次。已知(F/A,3%,5)=5.3091,(F/A,3%,10)=11.464,(F/A,6%,5)=5.6371,(F/A,6%,10)=13.181,则第5年年末的本利和为()元
听说法的语言学基础是()语言学。
数据库具有最小冗余度、较高的程序与数据独立性、易于扩充和什么的特点?
数据库DB、数据库系统DBS、数据库管理系统DBMS之间的关系是()。
最新回复
(
0
)