首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2-x-2)|x3-x|不可导点的个数是( )
函数f(x)=(x2-x-2)|x3-x|不可导点的个数是( )
admin
2019-03-08
54
问题
函数f(x)=(x
2
-x-2)|x
3
-x|不可导点的个数是( )
选项
A、3。
B、2。
C、1。
D、0。
答案
B
解析
方法一:当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数。f(x)=(x
2
-x-2)|x||x
2
-1|,当x≠0,±1时f(x)可导,因而只需在x=0,±1处考察f(x)是否可导。在这些点分别考察其左、右导数。由
即f(x)在x=-1处可导。又
所以,f(x)在x=0处不可导。
类似,函数f(x)在x=1处亦不可导。因此f(x)只有两个不可导点,故应选B。
方法二:利用下列结论进行判断:
设函数f(x)=|x-a|φ(x),其中φ(x)在x=a处连续,则f(x)在x=a处可导的充要条件是φ(a)=0。
先证明该结论:
由导数的定义可知:
可见,f’(a)存在的充要条件是φ(a)=-φ(a),也即φ(a)=0。
再利用上述结论来判断本题中的函数有哪些不可导点:
首先,绝对值函数分段点只可能在使得绝对值为零的点,即f(x)=(x
2
-x-2)|x
3
-x|只有可能在使得|x
3
-x|=0的点处不可导,也即x=-1,x=0以及x=1。
接下来再依次对这三个点检验上述结论:
对x=-1,将f(x)写成f(x)=(x
2
-x-2)|x
2
-x||x+1|,由于(x
2
-x-2)|x
2
-x|在x=-1处为零,可知f(x)在x=-1处可导。
对x=0,将f(x)写成f(x)=(x
2
-x-2)|x
2
-1||x|,由于(x
2
-x-2)|x
2
-1|在x=0处不为零,可知f(x)在x=0处不可导。
对x=1,将f(x)写成f(x)=(x
2
-x-2)|x
2
+x||x-1|,由于(x
2
-x-2)|x
2
+x|在x=1处不为零,可知f(x)在x=1处不可导。
因此f(x)有两个不可导点,故应选B。
转载请注明原文地址:https://kaotiyun.com/show/Ypj4777K
0
考研数学二
相关试题推荐
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b-a)∫abf(χ)g(χ)dχ≥∫abf(χ)dχ∫abg(χ)dχ.(*)
函数F(χ)=∫χχ+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(χ)
设函数y1(χ),y2(χ),y3(χ)线性无关,而且都是非齐次线性方程y〞+p(χ)y′+q(χ)y=f(χ)的解,C1,C2为任意常数,则该非齐次方程的通解是
求I=χ[1+yf(χ2+y2)]dχdy,D由y=χ3,y=1,χ=-1围成,f是连续函数.
设函数f(χ)=并记F(χ)=∫0χf(t)dt(0≤χ≤2),试求F(χ)及∫f(χ)dχ.
求[φ(χ)-t]f(t)dt,其中f(t)为已知的连续函数,φ(χ)为已知的可微函数.
设函数f(χ)在χ=χ0处存在.f′+(χ0)与f′(χ0),但f′+(χ0)≠f′-(χ0),说明这一事实的几何意义.
随机试题
遏制办公室浪费,需要制度层面的_________约束。要知道,倡导很多时候并不能成为每一个人的规范。它需要时间,也需要激发每一个个体的内在响应,而这当中必有人或置若罔闻,或_________;最终_________,很难达到预期的效果。填入画横线部分最恰
A.大补阴丸合茜根散B.归脾汤C.大补元煎D.犀角地黄汤E.左归丸特发性血小板减少陛紫癜阴虚火旺证应首选
肝硬化最基本的病变是
下列属于“综合评估比较表”应当载明的内容是()。
下列不属于学习策略中精加工策略的是()。
若在一墓穴中发掘出墓主的印章和墓志铭,就能确定该墓穴是墓主的真墓。在西高穴大墓中,没有发掘出曹操的印章和墓志铭。故西高穴大墓不是真的曹操墓。 以下哪项的论证方式与题干最为类似?
有关人类的许多问题之一,就是确定人类在自然中的位置。我们人类是从哪里来的?是上帝创造的吗?是自然界为人类而设,还是人仅仅是自然界中的一员?人和猿的差别比白天和黑夜的差别还要大吗?所有这些问题经常出现在人们面前。我们当中的多数人,在寻求这些问题的新答案时
感性认识和理性认识有着密不可分的联系,表现在()
Cultureisthesumtotalofallthetraditions,customs,beliefs,andwaysoflifeofagivengroupofhumanbeings.Inthis(1)
设关系R和关系S的元数分别是3和4,元组数分别为5和6,则R与S自然连接所得到的关系,其元数和元组数分别为()。
最新回复
(
0
)