首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2-x-2)|x3-x|不可导点的个数是( )
函数f(x)=(x2-x-2)|x3-x|不可导点的个数是( )
admin
2019-03-08
55
问题
函数f(x)=(x
2
-x-2)|x
3
-x|不可导点的个数是( )
选项
A、3。
B、2。
C、1。
D、0。
答案
B
解析
方法一:当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数。f(x)=(x
2
-x-2)|x||x
2
-1|,当x≠0,±1时f(x)可导,因而只需在x=0,±1处考察f(x)是否可导。在这些点分别考察其左、右导数。由
即f(x)在x=-1处可导。又
所以,f(x)在x=0处不可导。
类似,函数f(x)在x=1处亦不可导。因此f(x)只有两个不可导点,故应选B。
方法二:利用下列结论进行判断:
设函数f(x)=|x-a|φ(x),其中φ(x)在x=a处连续,则f(x)在x=a处可导的充要条件是φ(a)=0。
先证明该结论:
由导数的定义可知:
可见,f’(a)存在的充要条件是φ(a)=-φ(a),也即φ(a)=0。
再利用上述结论来判断本题中的函数有哪些不可导点:
首先,绝对值函数分段点只可能在使得绝对值为零的点,即f(x)=(x
2
-x-2)|x
3
-x|只有可能在使得|x
3
-x|=0的点处不可导,也即x=-1,x=0以及x=1。
接下来再依次对这三个点检验上述结论:
对x=-1,将f(x)写成f(x)=(x
2
-x-2)|x
2
-x||x+1|,由于(x
2
-x-2)|x
2
-x|在x=-1处为零,可知f(x)在x=-1处可导。
对x=0,将f(x)写成f(x)=(x
2
-x-2)|x
2
-1||x|,由于(x
2
-x-2)|x
2
-1|在x=0处不为零,可知f(x)在x=0处不可导。
对x=1,将f(x)写成f(x)=(x
2
-x-2)|x
2
+x||x-1|,由于(x
2
-x-2)|x
2
+x|在x=1处不为零,可知f(x)在x=1处不可导。
因此f(x)有两个不可导点,故应选B。
转载请注明原文地址:https://kaotiyun.com/show/Ypj4777K
0
考研数学二
相关试题推荐
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b-a)∫abf(χ)g(χ)dχ≥∫abf(χ)dχ∫abg(χ)dχ.(*)
设f(χ)定义在(a,b)上,c∈(a,b),又设H(χ),G(χ)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(χ)的原函数.令F(χ)=其中选常数C0,使得F(χ)在χ=c处连续.就下列情形回答F(χ)是否是f(χ)在(a,b)
函数F(χ)=∫χχ+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(χ)
求I=χ[1+yf(χ2+y2)]dχdy,D由y=χ3,y=1,χ=-1围成,f是连续函数.
设函数f(χ)=并记F(χ)=∫0χf(t)dt(0≤χ≤2),试求F(χ)及∫f(χ)dχ.
求[φ(χ)-t]f(t)dt,其中f(t)为已知的连续函数,φ(χ)为已知的可微函数.
设函数f(χ)在χ=χ0处存在.f′+(χ0)与f′(χ0),但f′+(χ0)≠f′-(χ0),说明这一事实的几何意义.
随机试题
当方差分析结果,F<F0.05(V1,V2)时,有当F>F0.01(V1,V2)时,有
点P(3,7,5)关于平面π:2x-6y+3z+42=0对称的点P’的坐标为( )。
背景资料某新建矿井设计年生产能力为120万吨,采用立井开拓方式。该矿井主井井深700m,建设单位在招标文件中提供的地质资料预测:在井深300~310m需穿过K含水岩层,预计涌水量35m3/h左右。某施工单位中标该工程,与建设单位签订了固定总价合同。由二级
同自营业务相比,下列选项中,( )是证券经纪业务的特点。
谈谈你对习题讲评课的认识。习题讲评课中常见的问题有哪些?教学时应该怎么做?
热岛效应是指城市由于人口集中,工业、交通、居民生活等产生大量的人为热量而使城市的气温高于郊区的现象。雨岛效应是指由于热岛效应,在城市上空产生一股上升气流,加上上空尘埃较多,使附近及下风向降水稍多的现象。温室效应是指由于人类活动排放大量温室气体而造成全球气候
100个结点的平衡二叉树(AVL树)最高为()层?(根是第1层)
注意的基本品质包括
关闭多区的表文件,并释放所有的内存变量,命令为______。
Newsisbadforyou—andgivingupreadingitwillmakeyouhappierA)Inthepastfewdecades,thefortunateamongushaverecogn
最新回复
(
0
)