首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1
admin
2016-03-18
47
问题
设A为三阶矩阵,特征值为λ
1
=λ
2
=1,λ
3
=2,其对应的线性无关的特征向量为α
1
,α
2
,α
3
,令P
1
=(α
1
-α
3
,α
2
+α
3
,α
3
),则P
1
-1
选项
A、
B、
C、
D、
答案
A
解析
A
*
的特征值为2,2,1,其对应的线性无关的特征向量为α
1
,α
2
,α
3
,
转载请注明原文地址:https://kaotiyun.com/show/Ytw4777K
0
考研数学一
相关试题推荐
设A=E-ααT,其中α为n维非零列向量,证明:当α是单位向量时A为不可逆矩阵。
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0证明:α1,α2,α3,…,αn线性无关。
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=________.
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,ξ3,…,ξr与η1,η2,η3,…,ηs线性无关。
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交,证明:β1,β2线性相关。
求微分方程xy’+(1-x)y=e2x(x>0)满足的特解.
设Σ是半球面x2+y2+z2=1(x≥0,y≥0)的外侧,则曲线积分xyzdxdy=().
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.证明当t>0时,F(t)>2/πG(t).
随机试题
数字产品的特点
患者,女性,52岁。乙型肝炎病史20年,肝硬化病史l0年,现确诊为肝性脑病,遵医嘱给予患者乳果糖口服的目的是
地面点受到()的作用,形成重力。
关于税务师事务所质量控制一般要求的说法,正确的有()。
因为公司债务必须付息,而普通股不一定支付股利,所以普通股资本成本小于债务资本成本。()
以下哪些服务不属于医院社会工作者提供的服务?()。
社会主义协商民主就是在党的领导下,社会各个政党、阶层、团体、群众等,就共同关心或利益相关的问题,以适当方式进行协商形成各方均可接受的方案,做出决策或决定以实现整体的发展。发展社会主义协商民主有利于()。①我国发展西方主流民主形式
该地区人口出生率最高是()该地人口自然增长率最低是()
真正伟大的历史人物,他所展现出来的价值和意义,绝不是他所处的那个时代所能够局限的,一定可以超越他所在的那个具体的时代和具体的生存环境,超越时空,焕发出________的永恒的价值。填入划横线部分最恰当的一项是()。
RestaurantsinEurope,theUnitedStatesandJapanaretestingtechnologytoletdinersordertheirfooddirectfromascreenat
最新回复
(
0
)