首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αs均为n维列向量,下列结论不正确的是( )
设α1,α2……αs均为n维列向量,下列结论不正确的是( )
admin
2017-05-16
37
问题
设α
1
,α
2
……α
s
均为n维列向量,下列结论不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
……α
s
线性无关.
B、若α
1
,α
2
……α
s
线性相关,则对任意一组不全为零的数k
1
,k
2
,…,k
s
,有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0.
C、α
1
,α
2
……α
s
线性无关的充分必要条件是此向量组的秩为s.
D、α
1
,α
2
……α
s
线性无关的必要条件是其中任意两个向量线性无关.
答案
B
解析
本题考查向量组线性相关、线性无关的概念及其等价命题.由向量组线性相关的定义知,向量组α
1
,α
2
……α
s
线性相关
存在一组不全为零的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,这里要求的是“存在”,不是“任意”,故B选项的结论不正确.应选B.
向量组α
1
,α
2
……α
s
线性无关
方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解
矩阵的秩r(α
1
,α
2
……α
s
)=s.所以C的结论正确,不应选.
向量组α
1
,α
2
……α
s
线性无关
方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解
对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,所以A的结论正确,不应选.
由于线性无关向量组的任意部分组必线性无关,所以D的结论正确.不应选.
转载请注明原文地址:https://kaotiyun.com/show/Ywt4777K
0
考研数学二
相关试题推荐
设f(x)=sinx-∫0x(x-t)f(t)dt,其中f为连续函数,求f(x).
设函数f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫0f(x)g(t)dt=x2ex,求f(x).
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求F(x)所满足的一阶微分方程。
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
考察下列函数的极限是否存在.
函数。在闭区间[0,2]上是否连续?作出f(x)的图形.
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
求极限
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
随机试题
试述中国工人阶级的产生及其特点。
患者,男,45岁。烫伤半小时,面积约2%。创面发红,有水泡。关于患者的创面处理错误的是
郑某涉嫌犯罪被检察院提起公诉,案件进入审判阶段,郑妻发现检察院公诉人是被害人的胞兄,法院的翻译人员曾与被害人是邻居,关系亲近,下列不符合规定的是:()
[2000年第131题]住宅内隔声减噪设计,下列措施哪一条不符合规范规定?
成本预算的内容包括()和经营成本。
水环境现状评价方法有()。
学校文化是在学校的发展中逐渐积累而自然形成的文化。
读世界大洲、大洋分布图(图4),回答问题。图中①是________洲,它是世界上最大的一个洲,该洲地势中间高耸,四周低下,导致河流从中部呈________状流向四周的海洋。②大洲的智利在2010年发生8.8级强地震,该洲是________。③
规划30岁时成为一家中型公司部门经理,40岁时成为一家大型公司副总经理属于职业生涯规划中的()。
Shynessisthecauseofmuchunhappinessforagreatmanypeople.Shypeopleareanxiousandself-conscious;thatis,theyaree
最新回复
(
0
)