首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型f(x1,x2,…,xn)=(x1+α1x2)2+(x2+x2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
设有n元实二次型f(x1,x2,…,xn)=(x1+α1x2)2+(x2+x2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
admin
2019-05-08
76
问题
设有n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+α
1
x
2
)
2
+(x
2
+x
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数。试问:当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型。
选项
答案
由题设条件知,对任意的x
1
,x
2
,…,x
n
,有 f(x
1
,x
2
,…,x
n
)≥0 其中等号成立当且仅当 [*] 方程组(*)仅有零解的充分必要条件是其系数行列式不为零,即 [*] 所以,当1+(一1)
n+1
a
1
,a
2
…a
n
≠0时,对于任意的不全为零的x
1
,x
2
,…,x
n
,有f(x
1
,x
2
,…,x
n
)>0,即当 a
1
a
2
…,a
n
≠(一1)
n
时,二次型,为正定二次型。
解析
本题综合考查二次型的正定性、齐次方程组仅有零解的条件、行列式的展开法则等知识及其灵活应用。注意,本题将f正定归结为齐次方程组(*)仅有零解,是求解的关键。本题f是平方和,所以也可以考虑用标准形来作:若矩阵
就可将f化成规范形f=y
1
2
+y
2
2
+…+y
n
2
。因此,由|A|≠0,就可得a
1
a
2
…a
n
≠(一1)
n
,此时,f正定。
转载请注明原文地址:https://kaotiyun.com/show/YzJ4777K
0
考研数学三
相关试题推荐
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
求微分方程y’’+2x(y’)2=0满足初始条件y(0)=1,y’(0)=1的特解.
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
设求矩阵A可对角化的概率.
设的一个基础解系为,写出的通解并说明理由.
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组似AX=b有两个不同解,η1η2,则下列命题正确的是().
试求z=f(x,y)=x3+y3一3xy在矩形闭域D={(x,y)|0≤x≤2,一1≤y≤2}上的最大值与最小值.
(2002年)假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间E(X)为5小时。设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机。试求该设备每次开机无故障工作的时间Y的分布函数F(y)。
证明:满足微分方程y(4)-y=0并求和函数S(x).
随机试题
中等量胸腔积液液面上方的体征特点为
关于中小企业实行会计电算化的岗位设置,下列说法正确的是()。
关于系列基金,下列说法不正确的是()。
个人转让下列财产不需缴纳个人所得税的是()。
新课程下的课程总目标按三个维度表达,即_______、_______、_______。
高中语文必修和选修课程均按___________组织学习内容,每个模块36学时,2学分。
—It’sreallyhottoday.Whatdrinksdowehaveinthefridge?—Wehavesome______.
态度与品德在人的一生中具有重要作用,请结合教学实际,谈谈如何帮助学生形成良好的态度与品德。
下图所示的数据模型属于
TheintelligencetestsusedmostoftentodayarebasedontheworkofaFrenchman,AlfredBinet.In1905,Binetwasaskedbythe
最新回复
(
0
)