首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问t为何值时,向量组α1,α2,α3线性无关? (2)当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问t为何值时,向量组α1,α2,α3线性无关? (2)当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
admin
2019-08-12
41
问题
设α
1
=(1,1,1),α
2
=(1,2,3),α
3
=(1,3,t).
(1)问t为何值时,向量组α
1
,α
2
,α
3
线性无关?
(2)当t为何值时,向量组α
1
,α
2
,α
3
线性相关?
(3)当α
1
,α
2
,α
3
线性相关时,将α
1
表示为α
1
和α
2
的线性组合.
选项
答案
由行列式|(α
1
,α
2
,α
3
)
T
|=t=5,知当t≠5时,α
1
,α
2
,α
3
线性无关,当t=5时,α
1
,α
2
,α
3
线性相关.当t=5时,由解方程组x
1
α
2
+x
2
α
2
=α
3
,得α
3
=一α
1
+2α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z0N4777K
0
考研数学二
相关试题推荐
(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x)的极值.
求极限
设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求
求函数y=excosx的极值.
随机试题
军人社会保障的主要内容是什么?
在人类社会早期,行政组织的职能主要是:
简述个别品牌策略的优点。
渠道成员的角色和权利划分不清而引致冲突,其原因在于()
A、Eatbeforeseeingthemovie.B、Seethemoviebeforeeating.C、Stayinthetownforawhile.D、Gototownbeforeeating.A
肌肉收缩时,如后负荷越小
年老体弱、肺功能不全者慎用哪种镇咳药
回购期满时,如以券融资方未按规定将资金划拨到位,其抵押的()将用于平仓交割。
代位追偿权
可编程DMA控制器8237A仅支持64KB的寻址空间,因此不能够访问系统的1M地址空间,因此系统使用74LS670芯片为通道1~3分别配置了一个【 】,用来存放20位物理地址的高4位地址。
最新回复
(
0
)