首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
admin
2020-04-21
84
问题
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
选项
答案
(1)由已知可得 φ’(t)=1一cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t—sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
—1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
—1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t一sint)(1一cost)
2
dt=2π∫
0
2π
t(1一cost)
2
dt, 令t=2w—s,则 V=2π∫
0
2π
(2π—s)(1一coss)
2
ds=4π
2
∫
0
2π
(1一coss)
2
ds—V, [*] 上式中,∫
0
2π
sint(1一cost)
2
dt=∫
—π
π
sint(1一cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Z684777K
0
考研数学二
相关试题推荐
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
[2012年]计算二重积分xydσ,其中区域D为曲线r=1+cosθ(0≤θ≤π)与极轴围成.
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
[2017年]设y(x)是区间(0,)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与Y轴相交于点(0,YP),法线与x轴相交于点(XP,0),若Xp=Yp,求L上点的坐标(x,y)满足的方程。
[2009年]设y=y(x)是区间(一π,π)内过点(-π/√2,π/√2)的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0,求函数y(x)的表达式.
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
利用定积分定义计算下列积分:
求极限:.
随机试题
一个区段内牙结石量太多或有不良修复体无法检查的是一个区段内有一个以上的牙周袋深度在5.5mm以上的是
性传播性疾病的英文缩写字符为:
从事爆破拆除工程的施工单位,必须持有工程所在地法定部门核发的(),承担相应等级的爆破拆除工程。
重力式码头基槽抛石前,对重力密度超过12.6kN/m3、厚度大于()的回淤物应予清除。
企业破产,非债权人承受破产企业土地、房屋权属,按照规定妥善安置原企业全部职工,与原企业30%以上职工签订服务年限不少于3年的劳动用工合同的,()契税。
以往的研究认为火山爆发会释放大量热量,引发全球变暖,但近日的研究发现,火山爆发不仅不会引发全球温度上升,还可以削弱全球变暖的影响。以下哪项为真,最能支持上述结论?()
马克思在研究商品时。之所以考察商品的使用价值,因为使用价值是
设f(x)的一个原函数为=_________.
信息系统的安全环节很多,其中最薄弱的环节是(60)________________,最需要在这方面加强安全措施。
Healthyguiltisawarningsignalthateithersomethingdangerousisabouttohappenorsomethinghasalreadyhappenedthatneed
最新回复
(
0
)