首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数F(x)在所讨论的区间上可导.下述命题正确的是 ( )
设函数F(x)在所讨论的区间上可导.下述命题正确的是 ( )
admin
2018-12-21
75
问题
设函数F(x)在所讨论的区间上可导.下述命题正确的是 ( )
选项
A、若f(x)在(a,b)内有界,则f
’
(x)在(a,b)内亦有界.
B、若f
’
(x)在(a,b)内有界,则f(x)在(a,b)内亦有界.
C、若f(x)在(a,﹢∞)内有界,则f
’
(x)在(a,﹢∞)内亦有界.
D、若f
’
(x)在(a,﹢∞)内有界,则f(x)在(a,﹢∞)内亦有界.
答案
B
解析
设f
’
(x)在(a,b)内的界为M,即|f
’
(x)|≤M,x∈(a,b),在(a,b)内任取一个闭区间[α,β], [α,β]
(a,b),因为f
’
(x)在(a,b)内存在,所以f(x)在(a,b)内连续,从而在[α,β]上连续,因此存在M
1
,当x∈[a,b]时|f(x)|≤M
1
.在[α,β]内取定x
0
,在(a,b)内任取x,在区间[x
0
,x]或[x,x
0
]上用拉格朗日中值公式,得f(x)=f(x
0
)﹢f
’
﹢f
’
(ξ)(x-x
0
),|f(x)|≤|f(x
0
)|﹢f
’
(ξ)||x-x
0
|≤M
1
﹢M(b-a),
其中ξ∈[x
0
,x]或[x,x
0
]),所以f(x)在(a,b)内有界.
以下分别举例说明(A),(C),(D)不正确.
(A)的反例.设f(x)=xsin
,x∈(0,1).f(x)在(0,1)内有界:|f(x)|<1,但f
’
(x)=
,当x∈(0,1),取
却是无界的.
(C)的反例.设f(x)=
sin x
3
,f(x)在区间(0,﹢∞)内有界
,而(D)的反例.设f(x)=x,f
’
(x)=1在(a,﹢∞)内有界,但f(x)=x在区间(a,﹢∞)内却无界.
转载请注明原文地址:https://kaotiyun.com/show/Z8j4777K
0
考研数学二
相关试题推荐
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】
(2004年)微分方程y〞+y=χ2+1+sinχ的特解形式可设为【】
(1989年)证明方程lnχ=在区间(0,+∞)内有且仅有两个不同实根.
(1989年)求
(1989年)曲线y=cosχ()与χ轴所围成的图形,绕χ轴旋转一周所成旋转体的体积为【】
(1987年)函数f(χ)=χsinχ【】
(1990年)在椭圆=1的第一象限部分上求一点P,使该点处的切线、椭圆及两坐标轴所围图形面积为最小(其中a>0,b>0).
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设二次型f(χ1,χ2,χ3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型中可用正交变换化为厂的是().(1)2y12+2y22(2)2y12.(3)2y12+2y32(4)2y
随机试题
慢性肾盂肾炎(chronicpyelonephritis)
治疗慢性心力衰竭时,哪种药物可能引发高钾血症
A.习惯性流产B.妊娠剧吐C.子痫D.妊高征E.盆腔炎
治疗小儿风湿热,首选药物为
房地产经纪人向买方委托人推荐房源时,应考虑的技术要点有()。
在工程网络计划中,工作M的最迟完成时间为第28天,其持续时间为6天。该工作有两项紧前工作,它们的最早完成时间分别为第12天和第15天,则工作M的总时差为()天。
在LAC最低点上()。
下面关于B树运算的叙述中,正确的是
一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是( )。
________enoughtimeandmoney,theresearcherswouldhavebeenabletodiscovermoreinthisfield.
最新回复
(
0
)