首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,n)T.试写出线性方程组的 通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,n)T.试写出线性方程组的 通解,并说明理由.
admin
2017-08-28
72
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,n
)
T
.试写出线性方程组的
通解,并说明理由.
选项
答案
记方程组(I)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(I)的基础解系中的n个向量就是B的n个行向量的转置向量.因此,由(I)的已知基础解系可知 AB
T
=0 转置即得 BA
T
=0 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n(B的行向量组线性无关),故(Ⅱ)的解空间的维数为2n—r(B)=2n—n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(I)的基础解系含n个向量,即2n—r(A)=n,故r(A)=n,于是可知A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
为任意常数.
解析
本题主要考查对矩阵的秩、齐次线性方程组的基础解系和通解等基本概念的理解及灵活应用.注意,(Ⅱ)是一个n×2n齐次线性方程组,所以它必然存在基础解系,找到了基础解系,也就有了通解.解答中引入系数矩阵的记号,不仅出于使得表述简单明了的目的,特别在讨论解的理论时必然要涉及到方程组的系数矩阵,因而必须引入它们.
转载请注明原文地址:https://kaotiyun.com/show/Z9r4777K
0
考研数学一
相关试题推荐
设有通解k[1,0,2,一1]T,其中k是任意常数,A中去掉第i(i=1,2,3,4)列的矩阵记成Ai,则下列方程组中有非零解的方程组是()
函数u=3x2y一2yz+z3,v=4xy—z3,点P(1,一1,1)u在点P处沿gradv|p方向的方向导数等于________.
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α4=(2,-1,4,1).
用初等行变换化增广矩阵为阶梯形[*]
按下列要求举例:(1)一个有限集合(2)一个无限集合(3)一个空集(4)一个集合是另一个集合的子集
将一枚均匀的骰子投掷三次,记事件A表示“第一次出现偶数点”,事件B表示“第x次出现奇数点”,事件C表示“偶数点最多出现一次”,则
(2007年试题,18)计算曲面积分其中∑为曲面z=1—x2一(0≤z≤1)的上侧.
设有向曲面S:z=x2+y2,x≥0,y≥0,z≤1,法向量与z轴正向夹角为钝角.求第二型曲面积分
求极限
随机试题
科研课题
A.术后24小时下床活动B.术后卧床制动48小时C.术后卧床制动1周D.术后卧床制动2周E.术后卧床制动3周静脉血管重建术后应()
不使用颗粒性抗原的免疫反应是
A、续断B、巴戟天C、杜仲D、人参E、山药为治肾虚腰膝酸痛或筋骨无力要药的是()。
凡有条件者,截流时采用的材料均应优先选用()截流。
各国的高等教育招生制度,大体可分为两种方式,一种是高考选拔制,另一种是_______。
经过90年的奋斗、创造、积累,党和人民必须倍加珍惜、长期坚持、不断发展的成就不包括()。
确定两人从A地出发经过B、C、D沿逆时针方向行走一圈回到A的方案(如下图所示).其中,弧形代表山路,直线代表木桥,且每段山路或者木桥每次均只能有一人通过,则不同的方案有().
[*]
姚明是中国第一位国际篮球巨星,身价(personalwealth)超过10亿美元。前年,姚明因复发性足部和腿部伤病退出赛场。4个月后,他在上海一知名学府注册入校。学校为他量身定做了学位课程(degreeprogram),并主要采取单独授课的方式。据一家
最新回复
(
0
)