首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
admin
2014-04-23
80
问题
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量.
若A可逆,且有A
3
ξ=λξ,A
5
ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
选项
答案
A
3
ξ=λξ,(*)A
5
ξ=λ
2
ξ.(**)(*) 式左乘A
3
,得 A
6
ξ=λA
3
ξ=λ
2
ξ;(**)式左乘A,得 A
6
ξ=μAξ. 故有 μAξ=λ
2
ξ,又因A可逆,故A
5
可逆,其对应的特征值μ≠0. 从而有[*] 得证ξ也是A的特征向量,且对应特征值为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IA54777K
0
考研数学一
相关试题推荐
已知|a|=2,|b|=5,a和b的夹角为2/3π,如果向量A=λa+17b与B=3a-b垂直,则系数λ=________________.
设矩阵,矩阵B=(kE+A)2,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+2a2+3a3,b2=2a1+2a2+4a3,b3=3a1+a2+3a3.
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+a2,b2=2a2+3a3,b3=5a1+3a2.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,br线性无关.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
随机试题
以下选项中,属于社会公德内容的有
有关环丙沙星的说法,错误的是
(操作员:赵主管;账套:301账套;操作日期:2015年1月31日)选择单据号为0015(单据类型为应收借项)的应收单,生成凭证。
根据香港联交所在《上市规则》中的有关规定,在境外发行股票并拟在中国香港上市的股份有限公司应具备的条件包括( )。
以下关于非货币性资产交换的说法中,正确的有()。
左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
设函数f(x,y)可微分,且对任意的x,y都有,则使不等式f(x1,y1)>f(x2,y2)成立的一个充分条件是()
阅读下列说明和C代码,回答问题,将解答写在答题纸的对应栏内。【说明】n皇后问题描述为:在一个nXn的棋盘上摆放n个皇后,要求任意两个皇后不能冲突,即任意两个皇后不在同一行、同一列或者同一斜线上。算法的基本思想如下:将第i个皇后摆放在第i行,i从1
SQL的DDL主要是定义(20)。若有:学生关系模式S(Sno,Sname,Age,Sex),课程关系模式C(Cno,Cname,Teacher)以及成绩关系模式SC(Sno,Cno,Grade),其中S的属性分别表示学生的学号、姓
PASSAGETWO
最新回复
(
0
)