首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
admin
2014-04-23
53
问题
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量.
若A可逆,且有A
3
ξ=λξ,A
5
ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
选项
答案
A
3
ξ=λξ,(*)A
5
ξ=λ
2
ξ.(**)(*) 式左乘A
3
,得 A
6
ξ=λA
3
ξ=λ
2
ξ;(**)式左乘A,得 A
6
ξ=μAξ. 故有 μAξ=λ
2
ξ,又因A可逆,故A
5
可逆,其对应的特征值μ≠0. 从而有[*] 得证ξ也是A的特征向量,且对应特征值为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IA54777K
0
考研数学一
相关试题推荐
已知|a|=2,|b|=5,a和b的夹角为2/3π,如果向量A=λa+17b与B=3a-b垂直,则系数λ=________________.
求下列向量组的秩,并求一个最大无关组:
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+2a2+3a3,b2=2a1+2a2+4a3,b3=3a1+a2+3a3.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,br线性无关.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式.
随机试题
在计算机中,运算器的作用是进行______。
Hewasdefeatedinthecompetitionpartlybecausehewas______tothefeelingsofothers.(sense)
慢性风湿性瓣膜病常见的联合瓣膜损害是
治疗心室扑动,下述措施中最有效的是()
彩色透明软片和纸基像片应在()的条件下,对其进行快速干燥。
2013年4月10日,甲施工单位职工王某因参与打架斗殴被判处有期徒刑1年,缓期3年执行,2013年5月1日,甲施工单位经过研究决定解除与王某的劳动合同。但考虑到王某在单位工作多年,决定向其多支付1个月的额外工资,随后书面通知了王某。这种劳动合同解除的方式称
三相异步电动机的转子有()。
公司信贷风险预警的理论和方法主要包括()。
利用图片、图表、模型、幻灯片、电影电视等手段进行教学的直观类型是()。
根据反不正当竞争法的相关规定,经营者进行抽奖式的有奖销售,最高奖的金额不得超过三万元。()
最新回复
(
0
)