首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量. 若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
admin
2014-04-23
61
问题
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量.
若A可逆,且有A
3
ξ=λξ,A
5
ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
选项
答案
A
3
ξ=λξ,(*)A
5
ξ=λ
2
ξ.(**)(*) 式左乘A
3
,得 A
6
ξ=λA
3
ξ=λ
2
ξ;(**)式左乘A,得 A
6
ξ=μAξ. 故有 μAξ=λ
2
ξ,又因A可逆,故A
5
可逆,其对应的特征值μ≠0. 从而有[*] 得证ξ也是A的特征向量,且对应特征值为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IA54777K
0
考研数学一
相关试题推荐
试证向量a=-i+3j+2k,b=2i-3j-4k,c=-3i+12j+6k在同一平面上.
已知|a|=2,|b|=5,a和b的夹角为2/3π,如果向量A=λa+17b与B=3a-b垂直,则系数λ=________________.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设矩阵,矩阵B=(kE+A)2,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+2a2+3a3,b2=2a1+2a2+4a3,b3=3a1+a2+3a3.
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+a2,b2=2a2+3a3,b3=5a1+3a2.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式.
设矩阵A=aaT+bbT,这里a,b为n维列向量,证明:当a,b线性相关时,R(A)≤1.
随机试题
从资源管理的角度看,操作系统的主要功能包括处理器管理、存储管理、设备管理、联网与通信管理以及()。
猩红热样皮疹多见于频咳,喘憋重多见于
对于急性胰腺炎患者,以下哪项是护士
控制阀校准和试验要求包括()。
为了分清会计事项处理的先后顺序,便于记账凭证与会计账簿之间的核对,确保记账凭证的完好无缺,填制记账凭证时,应当( )。
宁夏旅游资源中的“两山一河”指的是()。
实施培训是指在企业培训组织管理部门或岗位人员的组织下,由培训教师实施培训,其主要内容不包括()。
下列作品中属于编年体历史著作的是()。
一个人的拥有,不是取决于机遇,而是取决于人的眼光。眼光______的人,只看到一时,而看不到一世;眼光______的人,只看到好的一面,而看不到坏的一面;只有那些眼光长远、______的人,才能拥有很多很多。填入横线部分最恰当的一项是()。
WhatistheMangoingtobuy?
最新回复
(
0
)