首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 利用的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明结论。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。 利用的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明结论。
admin
2019-04-22
65
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。
利用的结果判断矩阵B一C
T
A
一1
C是否为正定矩阵,并证明结论。
选项
答案
由(I)中结果知矩阵D与矩阵 [*] 合同,又因D是正定矩阵,所以矩阵M为正定矩阵,从而可知M是对称矩阵,那么B—C
T
A
-1
C是对称矩阵。 对m维零向量x=(0,0,…,0)
T
和任意n维非零向量y=(y
1
,y
2
,…y
n
)
T
,都有依定义,y
T
(B一C
T
A
-1
C)y为正定二次型,所以矩阵B—C
T
A
-1
C为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/ZDV4777K
0
考研数学二
相关试题推荐
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTAQ为对角形.
设b>a>0,证明:
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处可导。
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
设α,β都是n维列向量时,证明:①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设实对称矩阵A满足A2—3A+2E=0,证明:A为正定矩阵.
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(χ)=eχcosχ(χ3);(Ⅱ)f(χ)=(χ3);(Ⅲ)f(χ)=,其中a>0(χ2).
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
随机试题
高钾血症时,血清钾高于A.5mmmol/LB.4.5mmol/LC.4mmol/lD.5.5mmol/LE.3.5mmol/L
火陷形成的主要原因是
强心甾烯蟾毒类可发生哪种反应( )。
女性,45岁,偶然发现左乳房肿块,直径约2cm,质较硬,无压痛,与皮肤有少许粘连。左侧腋下可扪及1cm大小肿大的淋巴结。关于患者术后进行功能锻炼的方法正确的是
下列哪些机构是国际性的常设仲裁机构?
信贷是指一切以实现()为条件的价值运动形式。
根据以下资料。回答问题。A市统计局在该市范围内做了一项调查,抽取了5000名18到70周岁且在2015年有过网购经历的居民。结果显示:受访者2015年人均网购次数为19.4次。从分组情况看,有三类人群使用网购相对频繁:一是年轻群体,35岁以下的受
用于牙周袋深度检查的工具是()。
AspeciallabattheUniversityofChicagoisbusyonly【C1】______.Itisadream【C2】______whereresearchersareatwork【C3】___
Withhousingpricesdownsignificantlyinmanypartsofthecountryandinterestrateslow,itmaybeanaffordabletimefortwe
最新回复
(
0
)