首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A是3阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
admin
2021-07-27
83
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是三个对应的特征向量.证明:当λ
2
λ
3
≠0时,向量组ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关.
选项
答案
因[ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)]=[ξ
1
,λ
1
ξ
1
+λ
2
ξ
2
,λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
2
ξ
3
]-[ξ
1
,ξ
2
,ξ
3
][*]又λ
1
≠λ
2
≠λ
3
,故ξ
1
,ξ
2
,ξ
3
线性无关,由上式知ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关→[*]=λ
2
λ
3
2
≠0,即λ
2
λ
3
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZFy4777K
0
考研数学二
相关试题推荐
设A,B为三阶矩阵,且特征值均为-2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和-1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax2x3+2ax1x3,若a是使A正定的正整数,用正交变换把二次型f(x1,x2,x3)化为标准型,并写出所用正交变换。
设[x]表示不超过x的最大整数,则x=0是f(x)=的()
设当x→0时,f(x)=ln(1+x2)一ln(1+sin2x)是x的n阶无穷小,则正整数n等于()
设A为n阶方阵,且Ak=O(k为正整数),则()
随机试题
急性肾衰电解质紊乱,以哪项为最重要
信息化的直接作用在于提高生产效益和经济效益。据估计,信息化促进经济效益的平均倍增比率为()。
下列费用中,属于监理直接成本的是( )。
思想品德课程的根本性质是(),它也是本课程的灵魂,决定着课程的方向,规定着课程的基本性质。
关于声现象的说法中,正确的是()。
①用小小的木制手织机,固定在房角一柱上,一面伸出憔悴的手来②做母亲的全按照一个地方的风气,当街坐下,织男子们束腰用的板带过日子③当白日照到这长街时,这一条街静静的像在午睡④敏捷地把手中犬骨线板压着手织机的一端,退着粗粗的棉线,一面用一个棕叶刷子为孩子
老王两年前投资的一套艺术品市价上涨了50%,为尽快出手,老王将该艺术品按市价的八折出售,扣除成交价5%的交易费用后,发现与买进时相比赚了7万元。问老王买进该艺术品花了多少万元?
于1872年颁布,规定6~14岁的8年初等教育为强迫义务教育阶段的法案是
TheDifferencebetweenManandComputerWhatmakespeopledifferentfromcomputerprograms?Whatisthemissingelementthat
ComingHome:LifeAfterStudyingAbroadManyreturneeswhohavestudiedabroadmaysufferre-entrycultureshockwhentheygo
最新回复
(
0
)