首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500. (Ⅰ)求μ的置信度为0.95的置信区间; (Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少? (Ⅲ)如果n=1
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500. (Ⅰ)求μ的置信度为0.95的置信区间; (Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少? (Ⅲ)如果n=1
admin
2018-06-12
94
问题
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ
1
,…,χ
10
,已知
=1500.
(Ⅰ)求μ的置信度为0.95的置信区间;
(Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少?
(Ⅲ)如果n=100,那么区间(
)作为μ的置信区间时,置信度是多少?
选项
答案
(Ⅰ)正态总体的方差已知,求期望值μ的置信区间公式为 [*] 将σ=[*],n=10,[*]=1500,λ=1.96代入上式,得到 I=(1498,1502), 其中λ由等式P{U|<λ}=0.95(U~N(0,1))确定. (Ⅱ)根据(Ⅰ)中置信区间公式可知置信区间长度l=[*]λ,由于λ=1.96,σ=[*],l=1,依题意,应解不等式 [*]×1.96≤1, 得出n≥122.93.因此观察值个数n最少应取123. (Ⅲ)如果置信区间I=([*]),根据(Ⅰ)中置信区间公式,应有[*]λ=1.将σ=[*],n=100 代入上式,解出λ=3.54.其置信度为 1-α=P{|U|<3.54}=2Ф(3.54)-1=0.9996. 求置信度1-α的另一种解法是直接计算概率 [*] =2Ф(3.54)-1=0.9996.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZGg4777K
0
考研数学一
相关试题推荐
设A=(1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
设矩阵A的伴随矩阵A*=,且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
设则三条直线a1χ+b1y+c1=0,a2χ+b2y+c2=0,a3χ+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是()
设A(2,2),B(1,1),г是从点A到点B的线段下方的一条光滑定向曲线y=y(χ),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分I=∫г[πφ(y)cosπχ-2πy]dχ+[φ′(y)sinπχ-2π]dy.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).证明:f(x1)f(x2)≥
设昆虫产k个卵的概率为,又设一个虫卵能孵化成昆虫的概率为夕,若卵的孵化是相互独立的,问此昆虫的下一代有L条的概率是多少?
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________
设二维随机变量(X,Y)的分布律为则X与Y的协方差Cov(X,Y)为________
设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程z=h(t)一(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130厘米的雪堆全部融化需多少小时?
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)