首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是( )
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是( )
admin
2016-05-09
67
问题
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是( )
选项
A、r=n
B、r≥n
C、r<n
D、r>n
答案
C
解析
将矩阵A按列分块,A=(α
1
,α
2
,…,α
n
),则Aχ=0的向量形式为
χ
1
α
1
+χ
2
α
2
+…+χ
n
α
n
=0,
而Aχ=0有非零解
α
1
,α
2
,…,α
n
线性相关
r(α
1
,α
2
,…,α
n
)<n
r(A)<n.
所以应选C.
转载请注明原文地址:https://kaotiyun.com/show/lrw4777K
0
考研数学一
相关试题推荐
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设f(x)在(-∞,+∞)上有定义且是周期为2的奇函数,已知x∈(0,1)时,f(x)=lnx+cosx+ex+1,则当x∈[-4,-2]时,f(x)的表达式.
设函数y=y(x)由方程x=dx确定,则=________
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求正较变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形
设向量=(1,1,﹣1)T是A=的一个特征向量求a,b的值;
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
设矩阵A=与对角矩阵A相似求方程组(-2E-A*)x=0的通解
设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为a1=(2,-1,a+2,1)π,a2=(-1,2,4,a+8)π.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零
设A,B为三阶矩阵,满足AB+E=A2+B,E为三阶单位矩阵,又知A=,求矩阵B.
计算I=∫Leydx-(cosy-xey)dy,其中L是由点A(-1,1)沿曲线y=x2到点O(0,0),再沿直线到点B(2,0),再沿圆弧y=到点C(0,2)的路径.
随机试题
袁某,男,72岁,医生。自幼受父母熏陶及影响,喜欢用拔罐法治疗疾病。现向其二子传授拔罐知识,并且袁本人与其二子及一怀孕3个月的儿媳一起接受拔罐治疗。
皮肤癌的病理类型不包括
某COPD患者,目前鼻导管吸氧,流量为3L/分钟,估计其吸入氧浓度为
沥青针入度试验属于条件黏度试验,其条件为( )。
王先生夫妇今年都刚过40岁,年收入20万元左右,打算60岁退休,估计夫妇退休后第一年生活费为10万元,考虑通货膨胀的因素,夫妻俩每年的生活费用估计会以每年3%的速度增长。预计两人寿命可达80岁,并且现在拿出10万元作为退休基金的启动资金。夫妻俩均享受国家基
若x,y为实数,且|x+2|+的值为().
当今时代,互联网是各种社会思潮、各种利益诉求的集散地和意识形态较量的战场。不上网、不重视网络建设、不会充分利用网络的领导,不能算是一个现代化的领导。领导干部,除了读书、看报、听广播、看电视外,还要养成上网这一“第五习惯”,能够通过网络对社会舆情做一个科学的
下列关于绿色枫叶变成红色枫叶说法不正确的是:
在VisualFoxPro中,以独占方式打开数据库文件的命令短语是
以下程序的输出结果是inta,b;voidfun(){a=100;b=200;)main(){inta=5,b=7;fun();cout<<a<<b<<endl;}
最新回复
(
0
)