首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-05-09
58
问题
设A=
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中任意向量ξ
2
和ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(1)对增广矩阵(A[*]ξ
1
)作初等行变换,则 [*] 得Aχ=0的基础解系(1,-1,2)
T
或者Aχ=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,-k,2k+1)
T
,其中k为任意常数. 由于A
2
=[*],对增广矩阵(A
2
[*]ξ
1
)作初等行变换,有 [*] 得A
2
χ=0的基础解系(-1,1,0)
T
,(0,0,1)
T
. 又A
2
χ=ξ
1
有特解([*],0,0)
T
.故 ξ
3
=([*],0,0)
T
+t
1
(-1,1,0)
T
+t
2
(0,0,1)
T
或ξ
3
=([*]-t,t,t)
T
,其中t
1
,t
2
为任意常数. (2)因为 [*] 所以,ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/rrw4777K
0
考研数学一
相关试题推荐
设f(x)连续可导,且,又(Ⅰ)若F(x)在x=0处连续,求a;(Ⅱ)求F’(x),并讨论F’(x)在x=0处的连续性.
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求a,b,λ的值
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
A是三阶矩阵,三维列向量组β1,β2,β3线性无关,满足Aβ1=β2+β3,Aβ2=β1+β3,Aβ3=β1+β2,求|A|.
已知矩阵A=只有两个线性无关的特征向量,则A的三个特征值是__________,a=__________.
计算I=∫Leydx-(cosy-xey)dy,其中L是由点A(-1,1)沿曲线y=x2到点O(0,0),再沿直线到点B(2,0),再沿圆弧y=到点C(0,2)的路径.
设A为三阶实对称矩阵,为方组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
设A=[α1,α2,α3,α4],且η1=[1,1,1,1]T,η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则().
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
随机试题
《察病指南》的作者是
CPCR时后续生命支持阶段的主要任务是
(国家司法考试真题)甲的邻居乙买来建筑材料,准备在房后建一杂物间,甲认为会挡住自己出入的通道,坚决反对。乙不听。甲向法院起诉,请求法院禁止乙的行为。该诉讼属于哪类诉?()
深入推进依法行政,要求健全依法决策机制。下列哪一做法不符合上述要求?(2016年卷一4题)
取得时效的构成要件有()。
在生态环境现状调查中,自然环境状况调查和编绘的图件目录要在环评大纲中列出,并报()审批。
用友报表系统中,报表关键字是在报表“格式”状态下设置的。()
在装饰材料中,石膏制品形体饱满密实,表面光滑细腻,主要原因是()。
我国颁布的第一个现代学制是___________学制,我国实行的第一个现代学制是___________学制。
下列各项中加下划线的意义和用法全都相同的一项是()。
最新回复
(
0
)