首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
admin
2018-06-27
82
问题
设3阶实对称矩阵A的特征值为1,2,3,η
1
=(-1,-1,1)
T
和η
2
=(1,-2,-1)
T
分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
选项
答案
属于3的特征向量和η
1
,η
2
都正交,从而是齐次方程组 [*] 的非零解.解此方程组,得η
3
=(1,0,1)
T
构成它的一个基础解系.于是属于3的特征向量应为(k,0,k)
T
,k≠0. 建立矩阵方程A(η
1
,η
2
,η
3
)=(η
1
,2η
2
,3η
3
),用初等变换法解得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/9Zk4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求A的特征值和特征向量;
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
设x=Fcosθ,y=rsinθ.则直角坐标系xOy中的累次积分可化为极坐标系(r,θ)中的累次积分是____________.
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
(I)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离平方,求该圆盘的质量m.(Ⅱ)将以曲线及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
设证明:f(x,y)在点(0,0)处的两个偏导数fx’(0,0)与fy’(0,0)都存在,函数f(x,y)在点(0,0)处也连续;
设f(x)在x=a处存在二阶导数,则=__________.
一厂商经营两个工厂,生产同一种产品在同一市场销售,两个工厂的成本函数分别为C1=3Q12+2Q1+6,C2=2Q22+2Q2+4而价格函数为P=74-6Q,Q=Q1+Q2厂商追求最大利润.试确定每个工厂的产出.
设f(x)在区间[a,b]上连续,且f(x)>0,则函数在(a,b)内的零点个数为()
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
随机试题
患者男,25岁。重度哮喘发作经治疗缓解,出院后推荐其长期使用的药物是
患者李某,女性,70岁。患者反复咳喘30余年,近1周加重。现症见:喘咳气涌,胸部胀痛,痰多质黏色黄或夹有血色,伴胸中烦闷,身热,体温37.5℃,有汗,口渴而喜冷饮,面赤,咽干,小便赤涩,大便或秘,舌质红,舌苔薄黄或腻,脉滑数。根据该患者病情,治疗应首选
使用滤线栅的优点为
混凝土发生碳化后,对结构耐久性的不利影响主要是()。
【背景资料】某工程基础为整体筏板,地下2层、地上12层、裙房4层,钢筋混凝土全现浇框架一剪力墙结构,由某施工单位施工,施工过程中发生了以下事件:场地平整结束后,施工单位进行了工程定位和测量放线,然后进行土方开挖工作。基坑采取大放坡开挖,
2015年1月1日,位于市区的某公司销售一座已经使用过的仓库,签订合同并开具了发票,取得收入500万元。由于企业不能取得该房屋的评估价格,但能提供购房发票,发票上所载的购房金额是300万元,已经过税务机关确认。购房发票上所载日期是2012年1月1日。计算该
社会政策评估是社会政策过程的一项重要内容,其方法主要是采取社会科学的一般方法和技术。它不同于一般社会科学研究的最大特点是( )。
材料: 墙上的挂钟,曾是我童年最爱看的一道风景。我对它有一种说不出的崇拜,因为它掌管着时间,我们的作息似乎都受着它的支配。到了指定的时间,我们得起床上学,得做课间操,得被父母吆喝着去睡觉。虽然说有的时候我们还没睡够不想起床,在户外的月光下还没有戏耍够不
将评价对象的过去和现在进行比较,分析其发展变化的评价属于()。(2015·广西)
24—44
最新回复
(
0
)