首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)-0,f(1)=1。证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)-0,f(1)=1。证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
admin
2020-03-05
21
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)-0,f(1)=1。证明:
(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;
(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
选项
答案
(Ⅰ)令F(x)=f(x)-1+x,则F(x)在[0,1]上连续,且F(0)=-1<00,F(1)=1>0,于是由介值定理知,存在ξ∈(0,1),使得F(ξ)=0,即f(ξ)=1-ξ。 (Ⅱ)在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ZMS4777K
0
考研数学一
相关试题推荐
设n阶可逆矩阵A的一个特征值是-3,则矩阵必有一个特征值为_______.
已知向量组α1=(1,1,1,3)T,α2=(-0,-1,2,3)T,α3=(1,2a-1,3,7)T,α4=(-1,-1,a-1,-1)T的秩为3,则a=_______.
设n维行向量矩阵A=E-αTα,B=E+2αTα,则AB=()
微分方程(y2+x)dx一2xydy=0的通解为____________.
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,
设A为n阶矩阵,αn≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α1,α2,α3线性无关.
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设其中f和g具有一阶连续偏导数,且gz(x,y,z)≠0,求。
证明:用二重积分证明∫0+∞.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=-1为B的两个特征值,则行列式|A+2AB|=______.
随机试题
A.保湿剂B.油脂性基质C.水溶性基质D.抗氧剂E.防腐剂栓剂中的对羟基苯甲酸酯类是用作()。
做器械推举练习,膝关节伸时,髋关节的运动是()。
根据资本不同部分在剩余价值生产中的不同作用,可以把全部资本划分为()
治疗阴虚血燥型闭经,应首选的方剂是()
A、乳剂破裂B、乳剂絮凝C、乳剂分层D、乳剂转相E、乳剂酸败乳化剂类型改变导致
某公司拥有一栋旧写字楼,《房屋所有权证》记载的建筑面积为460m2。因年久失修,经房屋鉴定部门鉴定为危房,由上级总公司批准改建,建筑面积可增至600m2,该公司认为建600m2的写字楼经济上不合算,擅自建成建筑面积1000m2的写字楼。现该公司欲以该新建写
采用工程项目总承包模式的建设工程项目,发包人可将()等一系列工作全部发包给一家承包单位。
近年来的舌尖安全问题不得不让人们反思,究其原因有多方面:企业大打“价格战”,为降低成本非法使用劣质、有毒原料,为求利润丧失道德良心,而违法成本过低使企业以身试法;法律不健全,监管不到位,各监管部门职能交叠,监管边界模糊,易出现监管盲区;消费者维权意识薄弱,
EnvironmenthastakenratherabackseatpoliticallysincetheEarthsummitinRiodeJaneironearlyfiveyearsago.【C1】______t
Todayinmind-bendinglycoolstuffthatnanoparticles(纳米粒子)cando:AteamofresearchersatRiceUniversityinTexashasdemonst
最新回复
(
0
)