首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
使函数f(x)=x3+ax+b在区间(-∞,+∞)内只有一个零点x0(且x0<0)的常数a,b的取值范围是
使函数f(x)=x3+ax+b在区间(-∞,+∞)内只有一个零点x0(且x0<0)的常数a,b的取值范围是
admin
2016-01-23
62
问题
使函数f(x)=x
3
+ax+b在区间(-∞,+∞)内只有一个零点x
0
(且x
0
<0)的常数a,b的取值范围是
选项
A、a<0,b<0
B、a≥0,b<0
C、a<0,b>0
D、a≥0,b>0
答案
D
解析
本题考查函数零点问题——见到函数零点或方程实根以及两曲线交点的问题,就要先找函数再定区间,然后用零点定理,若还要研究个数,则必用函数的单调性及极(最)值处理.
解:因f(x)在(-∞,+∞)内连续,
f(x)=-∞,
f(x)=+∞,故由零点定理可知f(x)在(-∞,+∞)内至少有一个零点.
又f’(x)=3x
2
+a,为使f(x)只有一个零点,需a≥0(保证f(x)单调),而零点x
0
<0,f(0)=b,故只要b>0.
注:上述结果“a≥0,b>0”只是f(x)在(-∞,+∞)内只有一个负零点x
0
的充分条件.
转载请注明原文地址:https://kaotiyun.com/show/ZRw4777K
0
考研数学一
相关试题推荐
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
设∫0yetdt+∫0xcostdt=xy确定函数y=y(x),则=________.
设函数f(x)∈c[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:.
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0,证明:存在(ξ,η)∈D,使得.
已知,设D为由x=0,y=0及x+y=t所围成的区域,求.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.计算PQ.
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ’(u)≠1,求.
设f(x,y)在有界区域D上二阶连续可偏导,且在区域D内恒有条件,,则()。
设f(x)=|sinx|在[0,(2n-1)π](n≥1)上与x轴所围区域绕y轴旋转一周所得旋转体的体积为Vn,求
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
随机试题
神经鞘磷脂的化学组成不包括
A.肌张力丧失B.胃肠蠕动减弱C.循环功能减退D.呼吸困难E.疼痛播放柔和的轻音乐,主要针对临终病人的哪项变化
因为食用某品牌奶粉后婴儿出现不适症状,甚至有婴儿死亡。婴儿父母提起民事诉讼,因人数太多,且分布在全国各地。对于本案,下列哪些说法不正确?
关于梁中钢筋的保护层厚度的说法,正确的是()。
根据民事诉讼法律制度的规定,下列有关人民法院适用普通程序审理一审案件期限的各项表述中,正确的是()。
斯坎伦计划、拉克收益分享计划及改进生产盈余计划三者的相同点是()。
小明今天提前放学,步行回家10分钟的时候遇见开车接他的爸爸,于是上车一起回家,但回家时间仍比以往晚了1分钟,原因是今天爸爸下班晚了7分钟。那么,小明今天提前()分钟放学。
在对社会主义建设道路的探索中,为了搞好经济建设,提出的一系列方针和原则中,不包括()。
Thosedaysaregone,eveninHongKonginParagraph1suggeststhat______.Accordingtothepassage,whichofthefollowingis
甲于深夜到某办公大楼行窃时,被保安王某发现,王某拦住甲,甲将王某打昏,致其轻伤,随后逃跑。甲的行为应认定为()(2013年非法学基础课多选第43题)
最新回复
(
0
)