首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
使函数f(x)=x3+ax+b在区间(-∞,+∞)内只有一个零点x0(且x0<0)的常数a,b的取值范围是
使函数f(x)=x3+ax+b在区间(-∞,+∞)内只有一个零点x0(且x0<0)的常数a,b的取值范围是
admin
2016-01-23
82
问题
使函数f(x)=x
3
+ax+b在区间(-∞,+∞)内只有一个零点x
0
(且x
0
<0)的常数a,b的取值范围是
选项
A、a<0,b<0
B、a≥0,b<0
C、a<0,b>0
D、a≥0,b>0
答案
D
解析
本题考查函数零点问题——见到函数零点或方程实根以及两曲线交点的问题,就要先找函数再定区间,然后用零点定理,若还要研究个数,则必用函数的单调性及极(最)值处理.
解:因f(x)在(-∞,+∞)内连续,
f(x)=-∞,
f(x)=+∞,故由零点定理可知f(x)在(-∞,+∞)内至少有一个零点.
又f’(x)=3x
2
+a,为使f(x)只有一个零点,需a≥0(保证f(x)单调),而零点x
0
<0,f(0)=b,故只要b>0.
注:上述结果“a≥0,b>0”只是f(x)在(-∞,+∞)内只有一个负零点x
0
的充分条件.
转载请注明原文地址:https://kaotiyun.com/show/ZRw4777K
0
考研数学一
相关试题推荐
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b),证明:存在ξi∈(a,b)(i=1,2,..,n),使得.
x=ψ(y)是y=f(x)的反函数,f(x)可导,且f’(x)=,f(0)=3,求ψ"(3).
函数f(x)在x=1处可导的充分必要条件是()。
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于()。
已知二元函数f(x,y)满足,且f(x,y)=g(u,v),若=u2+v2,求a,b。
求由与x轴所围成的区域绕y=2旋转一周而成的几何体的体积。
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
随机试题
患儿3岁,近2周来多饮多尿,近3天来发热、咳嗽,昏迷半天来急诊室。查体:体温38.4℃,呼吸48次/min,血压:90/60mmHg,昏迷状,呼吸深长,口周微绀,眼窝稍凹陷,瞳孔等大,对光反射存。咽红,颈抗(-),心音有力,心率128次/min,律齐,未闻
A、Agroupofscientistsandnurses.B、Thecommunities.C、Theinfants’mother.D、Thelocalmedicalcenter.D从“Aspecialresearch
患者素有高血压病,1天前因恼怒而出现眩晕耳鸣,头痛且胀,面色潮红,急躁易怒,少寐多梦,口干口苦,舌红苔黄燥,脉弦数。治疗应首选
医疗机构发现可能与用药有关的严重不良反应,必须及时报告。有权接受其报告的单位是
以下属于效力待定合同的有( )。
出口口岸()征免性质()
在进行实物资产清查时,财产物资保管人员以及盘点人员必须同时在场,并在“盘存单”上签名或盖章。()
经营风险是任何商业活动都有的,它来自()。
设有关系R:(A,B,C)与SQL语句selectdistinctA,CfromRwhereB=5等价的关系代数表达式是Ⅰ.πA.C(σB=5(R))Ⅱ.σB=5(πA.C(R))
TheReviewofEuropeanHistoryWritingforanhistoricalseriesistricky,andtheoutcomeisnotalwaysasuccess.Thebest
最新回复
(
0
)