首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x1,x2及0≤t≤1,有f[(1一t)x1+tx2]<(1一t)f(x1)+ty(x2).
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x1,x2及0≤t≤1,有f[(1一t)x1+tx2]<(1一t)f(x1)+ty(x2).
admin
2020-05-02
25
问题
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x
1
,x
2
及0≤t≤1,有f[(1一t)x
1
+tx
2
]<(1一t)f(x
1
)+ty(x
2
).
选项
答案
方法一 设x
0
=(1-t)x
1
+tx
2
.f(x)在点x=x
0
处的一阶泰勒公式为 [*] 因为f"(x)>0,所以f(x)>f(x
0
)+f′(x
0
)(x-x
0
),故 f(x
1
)>f(x
0
)+f′(x
0
)(x
1
-x
0
),f(x
2
)>f(x
0
)+f′(x
0
)(x
2
-x
0
) 从而 (1-t)f(x
1
)+tf(x
2
) >(1-t)[f(x
0
)+f′(x
0
)(x
1
-x
0
)]+t[f(x
0
)+f′(x
0
)(x
2
-x
0
)] =(1-t)f(x
0
)+(1-t)f′(x
0
)(x
1
-x
0
)+tf(x
0
)+tf′(x
0
)(x
2
-x
0
) =f(x
0
)[(1-t)+t]+(1-t)tf′(x
0
)(x
1
-x
2
)+(1-t)tf’(x
0
)(x
2
-x
1
) =f(x
0
)=f[(1-t)x
1
+tx
2
] 因此 f[(1-t)x
1
+tx
2
]<(1-t)f(x
1
)+tf(x
2
) 方法二 设x
0
=(1-t)x
1
+tx
2
.于是由拉格朗日中值定理,得 f[(1-t)x
1
+tx
2
]-(1-t)f(x
1
)-tf(x
2
) =(1-t)f[(1-t)x
1
+tx
2
]-(1-t)f(x
1
)+tf[(1-t)x
1
+tx
2
]-tf(x
2
) =(1-t){f[(1-t)x
1
+tx
2
]-f(x
1
))+t{f[(1-t)x
1
+tx
2
]-f(x
2
)) =(1-t)tf′(ξ
1
)(x
2
-x
1
)+t(1-t)f′(ξ
2
)(x
1
-x
2
) =(1-t)t(x
2
-x
1
)[f′(ξ
1
)-f′(ξ
2
)] =(1-t)t(x
2
-x
1
)(ξ
1
-ξ
2
)f"(ξ) 不妨设x
1
<x
2
2,于是x
1
<ξ
1
<(1-t)x
1
+tx
2
<ξ<x
2
,所以x
2
>x
1
,ξ
2
>ξ
1
,再由f"(x)>0,可推知(1-t)t(x
2
-x
1
)(ξ
1
-ξ
2
)f"(ξ)<0.因此 f[(1-t)x
1
+tx
2
]<(1-t)f(x
1
)+tf(x
2
)
解析
转载请注明原文地址:https://kaotiyun.com/show/ZXv4777K
0
考研数学一
相关试题推荐
若函数f(x)=在x=1处连续且可导,则a=______,b=______。
设求曲线y=f(x)与直线所围成平面图形绕x轴旋转所成旋转体的体积.
设(X,Y)~f(x,y)=.求Z=X+Y的密度.
设f(x)为连续函数,且满足f(x)=x+∫01xf(x)dx,则f(x)=____________.
微分方程(1一x2)y-xy’=0满足初值条件y(1)=1的特解是________.
求函数f(x)=∫exdt在区间[e,e2]上的最大值.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分
设当x→x0时,α(x),β(x)(β(x)≠0)都是无穷小,则当x→x0时,下列表达式中不一定为无穷小的是()
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
(2009年)设有两个数列{an},{bn},若则()
随机试题
酸碱指示剂一般是有机弱酸或有机弱碱,它们在不同pH值的溶液中呈现不同颜-色是因为()。
分层注水井全井注水量不应超过配注水量的±20%。()
在西方美学史上,提出“美是道德的象征”这一命题的美学家是()
成人常规心脏摄影,焦一片距离应为
“十二五”时期,要把符合落户条件的农业转移人口逐步转为城镇居民作为推进城镇化的()任务。
阶级矛盾和统治阶级内部矛盾的不可调和性,是警察产生的政治条件。( )
1.2013年6月22日,在柬埔寨首都金边召开的第37届世界遗产委员会会议一致审议通过中国的红河哈尼梯田文化景观列入《世界遗产名录》。红河哈尼梯田文化景观成为中国第31项世界文化遗产,中国世界遗产总数达到45项。汉文字史料记载就有1300多年以上
简述抵押权的实现。
信息系统项目完成后,最终产品或项目成果应置于(332)内,当需要在此基础上进行后续开发时,应将其转移到(333)后进行。(333)
HowtoReadEffectivelyManystudentstendtoreadbookswithoutanypurpose.Theyoftenreadabookslowlyandingreatdeta
最新回复
(
0
)