首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x1,x2及0≤t≤1,有f[(1一t)x1+tx2]<(1一t)f(x1)+ty(x2).
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x1,x2及0≤t≤1,有f[(1一t)x1+tx2]<(1一t)f(x1)+ty(x2).
admin
2020-05-02
35
问题
设f(x)在(a,b)内二阶可导,且f"(x)>0,证明:对于(a,b)内任意两点x
1
,x
2
及0≤t≤1,有f[(1一t)x
1
+tx
2
]<(1一t)f(x
1
)+ty(x
2
).
选项
答案
方法一 设x
0
=(1-t)x
1
+tx
2
.f(x)在点x=x
0
处的一阶泰勒公式为 [*] 因为f"(x)>0,所以f(x)>f(x
0
)+f′(x
0
)(x-x
0
),故 f(x
1
)>f(x
0
)+f′(x
0
)(x
1
-x
0
),f(x
2
)>f(x
0
)+f′(x
0
)(x
2
-x
0
) 从而 (1-t)f(x
1
)+tf(x
2
) >(1-t)[f(x
0
)+f′(x
0
)(x
1
-x
0
)]+t[f(x
0
)+f′(x
0
)(x
2
-x
0
)] =(1-t)f(x
0
)+(1-t)f′(x
0
)(x
1
-x
0
)+tf(x
0
)+tf′(x
0
)(x
2
-x
0
) =f(x
0
)[(1-t)+t]+(1-t)tf′(x
0
)(x
1
-x
2
)+(1-t)tf’(x
0
)(x
2
-x
1
) =f(x
0
)=f[(1-t)x
1
+tx
2
] 因此 f[(1-t)x
1
+tx
2
]<(1-t)f(x
1
)+tf(x
2
) 方法二 设x
0
=(1-t)x
1
+tx
2
.于是由拉格朗日中值定理,得 f[(1-t)x
1
+tx
2
]-(1-t)f(x
1
)-tf(x
2
) =(1-t)f[(1-t)x
1
+tx
2
]-(1-t)f(x
1
)+tf[(1-t)x
1
+tx
2
]-tf(x
2
) =(1-t){f[(1-t)x
1
+tx
2
]-f(x
1
))+t{f[(1-t)x
1
+tx
2
]-f(x
2
)) =(1-t)tf′(ξ
1
)(x
2
-x
1
)+t(1-t)f′(ξ
2
)(x
1
-x
2
) =(1-t)t(x
2
-x
1
)[f′(ξ
1
)-f′(ξ
2
)] =(1-t)t(x
2
-x
1
)(ξ
1
-ξ
2
)f"(ξ) 不妨设x
1
<x
2
2,于是x
1
<ξ
1
<(1-t)x
1
+tx
2
<ξ<x
2
,所以x
2
>x
1
,ξ
2
>ξ
1
,再由f"(x)>0,可推知(1-t)t(x
2
-x
1
)(ξ
1
-ξ
2
)f"(ξ)<0.因此 f[(1-t)x
1
+tx
2
]<(1-t)f(x
1
)+tf(x
2
)
解析
转载请注明原文地址:https://kaotiyun.com/show/ZXv4777K
0
考研数学一
相关试题推荐
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组AX=0的通解为_____。
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+31nz在球面x2+y2+z2=5R2上的最大值,并证明(其中a>0,b>0,c>0).
求I=dydz,其中∑为下半球面z=的上侧,a>0.
设X1,X2,X3,X4是来自正态总体X~N(μ,σ2)的样本,则统计量服从的分布是______.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=_______.
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
函数z=1—(x2+2y2)在点处沿曲线C:x2+2y2=1在该点的内法钱方向n的方向导数为______.
求函数u=x+y+z在沿球面x2+y2+z2=1上的点(x0,y0,z0)的外法线方向上的方向导数,在球面上怎样的点使得上述方向导数取最大值与最小值?
设有两个数列{un},{vn},若则().
若则
随机试题
同一系统的机关,既有上级领导机关,又有下级被领导机关,上下级机关之间,构成______关系。上级业务主管部门和下级业务部门之间具有业务上的指导关系。
对钩端螺旋体病预防综合措施中最主要的是
ICSH建议,血细胞计数时首选抗凝剂是()。
此种情况下,可以提出执行商场的到期债务的是()。法院如果执行商场对服装公司的到期债务,应当通知商场向()履行债务。
房地产经纪机构的经营战略类型中,属于多向多样化战略类型的是()。
对于生长受到威胁的国家重点保护野生植物和地方重点保护野生植物,有关部门必要时应建立繁育基地、()或者采取迁地保护措施。
重视儿童的感官教育,并设计了一套发展儿童感官的教学材料的幼儿教育家是()。
我国传统教学的严重弊病是重视学生对基本知识和技能的掌握,而忽视培养学生的应用能力和创新能力。()
Agoodbookmayabsorbourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
Sportingactivitiesareessentiallymodifiedformsofhuntingbehavior.Viewingbiologically,themodernfootballerisrevealed
最新回复
(
0
)