首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组AX=0的通解为_____。
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组AX=0的通解为_____。
admin
2019-05-14
41
问题
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组AX=0的通解为_____。
选项
答案
k(1,1,…,1)
T
.
解析
因为Ax=0的基础解系所含向:量个数为n一r(A)=n一(n一1)=1,故AX=0的任一非零解都可作为它的基础解系.由已知,ξ=(1,1,…,1)
T
是AX=0的一个非零解,从而ξ可作为AX=0的基础解系,故得通解为X=k(1,1,…,1)
T
(k为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/ac04777K
0
考研数学一
相关试题推荐
证明:当0<x<1时,.
计算曲面积分x3dydz+y3dzdx+(z3+1)dxdy,其中∑为x2+y2+z2=a2(z≥0)部分的上侧.
当0<x<时,证明:<sinx<x.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
判断级数的敛散性.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:|∫02f(x)dx|≤2.
设f(x)=,其中g(x)为有界函数,则f(x)在x=0处().
(2003年)设{an},{bn},{cn}均为非负数列,且则必有
设函数f(x)是定义在(-1,1)内的奇函数,且则f(x)在x=0处的导数为()
随机试题
以下属于排除地表水的设施是()。
本病诊断为本病的治法
叶横切面观察上下表皮上的特征及附属物有
安装电缆时,1kV的电力电缆与控制电缆间距不应小于()mm。
中原城市群是以郑州为中心,以洛阳为副中心,以开封、新乡、焦作、许昌、平顶山、漯河、济源等地区性城市为节点构成的紧密联系圈。中原城市群内各城市联系日益紧密,基本形成了以郑州为中心的通达的交通网络。据此并结合下图回答问题。读下面两图,黄河小浪底水库蓄清排
在地球之外,究竟有没有外星人?两位美国学者花了5年的时间,在北半球天空到了37个可能是来自地球外文明的讯号。他们利用直径为26米的射电望远镜,_________由浩瀚宇宙深处发出的未知讯号。填入划横线部分最恰当的一项是:
人类社会的发展历史证明,中间阶层是社会的稳定器,他们有稳定的工作和收入,经济上乐于消费,政治上渴望稳定。中国目前的问题是中间阶层的规模还不够大,也不稳定,而且随着经济形势的变化,也开始面临失业的威胁。如果政府袖手旁观,置之不理,将不利于社会的稳定。
Science,beingahumanactivity,isnotimmunetofashion.【F1】Forexample,oneofthefirstmathematicianstostudythesubject
电子数字计算机最早的应用领域是_______。
ArchaeologistAndrejGaspariishauntedbypiecesofthepast.Hishometownriver,theLjubljanica,hasyieldedthousandsofthe
最新回复
(
0
)