首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,其特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P=(α1一α2,2α1+α2,4α3),则P-1AP=( ).
设A为三阶矩阵,其特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P=(α1一α2,2α1+α2,4α3),则P-1AP=( ).
admin
2014-11-26
83
问题
设A为三阶矩阵,其特征值为λ
1
=λ
2
=1,λ
3
=2,其对应的线性无关的特征向量为α
1
,α
2
,α
3
,令P=(α
1
一α
2
,2α
1
+α
2
,4α
3
),则P
-1
AP=( ).
选项
A、
B、
C、
D、
答案
B
解析
因为α
1
,α
2
为λ
1
=λ
2
=1对应的线性无关的特征向量,所以α
1
一α
2
,2α
1
+α
2
仍为λ
1
=λ
2
=1对应的线性无关的特征向量,又4α
3
显然是λ
3
=2对应的线性无关的特征向量,故P
-1
AP=
应选B
转载请注明原文地址:https://kaotiyun.com/show/Zl54777K
0
考研数学一
相关试题推荐
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α3线性无关,α4=α1+α2+2α3,记A=[α1-α2,α2+α3,-α1+aα2+α3],且方程组Ax=α4有无穷多解.求:常数a的值;
设A为n阶矩阵,证明二次型f(x1,x2,…,xn)=xTATAx正定的充要条件是r(A)=n.
已知向量组线性无关,证明:对任意实数a,b,c向量组也线性无关.
设ξ1=[1,-2,3,2]T,ξ2=[2,0,5,-2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是().
设平面区域D={(x,y)|(x—2)2+(y—1)2≤1},比较的大小,则有().
设A,B,C为常数,AC—B2<0,A≠0,u(x,y)具有二阶连续偏导数.证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
设z=f(e2t,sin2t),其中f二阶连续可偏导,则d2z/dt2=________.
设z=f[x+φ(x-y),y],其中f二阶连续可偏导,φ二阶可导,求
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
随机试题
光传输网如何分层?各层的功能是什么?
下列关于己糖激酶叙述哪项是正确的
根据《医疗机构制剂注册管理办法(试行)》,医疗机构制剂批准文号的有效期为
依照我国现行法律,()属于限制民事行为能力或者无民事行为能力的人。
能够用于解答“假定每个投资者都使用证券组合理论来经营他们的投资,这将会对证券定价产生怎样的影响”这一问题的模型是( )。
根据我国《企业所得税暂行条例》的规定,下列各项中,不计入应纳税所得额的是()。
下列属于非公开增发新股的认购方式的有()。
六罢运动
Everyonewouldhaveheardthefamousphrase"Angerisoneshortofdanger".Itisanage-oldadage,butitis(1)______andstill
Accordingtothepassage,scholarsandstudentsaregreattravelersbecause______.Whatwillhappentoascholarwhoshareshi
最新回复
(
0
)