首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且 ∫0πf(x)cos xdx=∫0πf(x)sin xdx=0。 求证:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且 ∫0πf(x)cos xdx=∫0πf(x)sin xdx=0。 求证:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2016-06-25
41
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且
∫
0
π
f(x)cos xdx=∫
0
π
f(x)sin xdx=0。
求证:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sin x>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sin xdx>0或∫
0
π
f(x)sin xdx<0,与题设矛盾. 所以,f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与∫
0
π
f(x)sin xdx=0矛盾.这样,函数sin(x一x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:∫
0
π
f(x)sin(x一x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x一x
0
)dx=∫
0
π
f(x)(sin xcos x
0
—cos xsin x
0
)dx =cos x
0
∫
0
π
f(x)sin xdx—sin x
0
∫
0
π
f(x)cos xdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Znt4777K
0
考研数学二
相关试题推荐
设an=∫0π/4tannxdx.
设一定收敛.
已知f(x)=1/(x2-3x+2),则f(n)(3)=________.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为-1/2,又设X=X/3+Y/2.求ρxz;
求下列不定积分。
求下列极限。
记un=∫01∣lnt∣[ln(1+t)]ndt(n=1,2,..,)求极限.
设函数f(x)=ln(1+ax2)-b,试问:a,b为何值时,f"(0)=4
随机试题
HBV抗原.抗体的检测可用于筛选合格的献血员。()
清代外务部内负责收受公文、掌管印信的秘书性机构是
牵涉痛
一摩尔的葡萄糖经有氧氧化产生ATP的数目与其无氧分解相比接近
乳房Paget病是指
化脓性脑膜炎最可靠的诊断依据是
亲水性材料的润湿角θ()。
中国共产党第一次自主地运用马列主义基本原理解决中国革命问题的会议是:
张某重伤他人被刑事拘留。一个月后,公安机关查明张某尚未满14周岁,遂依照《刑法》第17条释放张某。张某的父亲提出赔偿要求,按照《国家赔偿法》的规定,公安局如何处理?()
根据学生的能力发展水平分组教学,各组课程相同,学习年限各不相同,这种分组教学属于()。
最新回复
(
0
)