首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f’’(ε)=0.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f’’(ε)=0.
admin
2022-09-05
53
问题
若函数f(x)在(a,b)内具有二阶导数,且f(x
1
)=f(x
2
)=f(x
3
),其中a<x
1
<x
2
<x
3
<b,证明:在(x
1
,x
3
)内至少有一点ε,使得f’’(ε)=0.
选项
答案
由于f(x)在(a,b)内具有二阶导数,所以f(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,再根据题意f(x
1
)=f(x
2
),由罗尔定理知至少存在一点ε
1
∈(x
1
,x
2
),使得f’(ε
1
)=0 同理,在[x
2
,x
3
]上对函数f(x)使用罗尔定理得至少存在一点ε
2
∈(x
2
,x
3
),使得f’(ε
2
)=0 对函数f’(x)由已知条件知f’(x)在[ε
1
,ε
2
]上连续,在(ε
1
,ε
2
)内可导,且f’(ε
1
)=f’(ε
2
)=0 由罗尔定理知至少存在一点ε∈(ε
1
,ε
2
),使得f”(ε)=0 而(ε
1
,ε
2
)[*](x
1
,x
3
),故结论得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/YyR4777K
0
考研数学三
相关试题推荐
设y=y(x)为微分方程2xydx+(x2-1)dy=0满足初始条件y(0)=1的解,则y(x)dx为().
差分方程yx+1-yx=x2x的通解为_______.
(1)设y=y(x)由方程ey+6xy+x2-1=0确定,求y’’(0).(2)设y=y(x)是由exy-x+y-2=0确定的隐函数,求y’’(0).
设f(x)在[0,1]连续可导,且f’(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2f(x)dx.
设an=tannxdx.证明:对任意常数λ>0,收敛.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
已知当x→0时,f(x)=arcsinx-ar2019m12x/ctanax与g(x)=bx[x-ln(1+x)]是等价无穷小,则()
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于()
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
(1996年)设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一11)求f’(x);2)讨论f’(x)在(一∞,+∞)上的连续性.
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)