首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f’’(ε)=0.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f’’(ε)=0.
admin
2022-09-05
72
问题
若函数f(x)在(a,b)内具有二阶导数,且f(x
1
)=f(x
2
)=f(x
3
),其中a<x
1
<x
2
<x
3
<b,证明:在(x
1
,x
3
)内至少有一点ε,使得f’’(ε)=0.
选项
答案
由于f(x)在(a,b)内具有二阶导数,所以f(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,再根据题意f(x
1
)=f(x
2
),由罗尔定理知至少存在一点ε
1
∈(x
1
,x
2
),使得f’(ε
1
)=0 同理,在[x
2
,x
3
]上对函数f(x)使用罗尔定理得至少存在一点ε
2
∈(x
2
,x
3
),使得f’(ε
2
)=0 对函数f’(x)由已知条件知f’(x)在[ε
1
,ε
2
]上连续,在(ε
1
,ε
2
)内可导,且f’(ε
1
)=f’(ε
2
)=0 由罗尔定理知至少存在一点ε∈(ε
1
,ε
2
),使得f”(ε)=0 而(ε
1
,ε
2
)[*](x
1
,x
3
),故结论得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/YyR4777K
0
考研数学三
相关试题推荐
设函数φ(u)可导且φ(0)=1,二元函数z=φ(x+y)exy满足,则φ(u)=_______.
求
=________.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
议{un},{cn}为正项数列,证明:若对一切正整数n满足cnun-cn+1un+1,且发散,则un也发散;
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理P()≈____________.
判别下列级数的敛散性:其中{xn}是单调递增且有界的正数列;
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
设f(x)=∫0x,g(x)=∫0xsin2(x-t)dt,则当x→0时,g(x)是f(x)的().
随机试题
正则表达式中的符号一出现在口内和出现在口外的含义是不一样的。()
深圳证券交易所的证券交易方式有()。
(2005年)已知空气的密度ρ为1.205kg/m3,动力黏度(动力黏滞系数)μ为1.83×10-5Pa.s,那么它的运动黏度(运动黏滞系数)v为()。
效力待定合同包括( )订立的合同。
因果分析图是以( )为特征,以原因作为因素,将它们用箭头联系起来,表示因果关系的图形。
图示简支桁架,上弦杆AB主要承受( )。
高等教育私营化的最主要原因是()。
材料一:2006年12月26日,方便面中国分会在北京召开一届八次峰会,研究棕榈油和面粉涨价引起的企业成本增加问题。会议商定高价面(当时价格每包1.5元以上),中价面(当时价格每包1元以上)和低价面(当时价格每包1元以下)涨价的时间和实施步骤。从2007年7
只有坚持公有制的主体地位,才能()。①保证我国经济发展的社会主义方向②保证劳动人民在生活中的主人翁地位得到实现③防止两极分化,实现共同富裕④巩固和完善人民民主专政
WashingtonIrvingwasAmerica’sfirstmanofletterstobeknowninternationally.Hisworkswerereceivedenthusiasticallyboth
最新回复
(
0
)