首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数y=e2x+(x+1)ex是二阶常系数非齐次线性微分方程y"+ayˊ+by=Cex的一个特解,则该方程的通解是( ).
已知函数y=e2x+(x+1)ex是二阶常系数非齐次线性微分方程y"+ayˊ+by=Cex的一个特解,则该方程的通解是( ).
admin
2019-08-27
77
问题
已知函数y=e
2x
+(x+1)e
x
是二阶常系数非齐次线性微分方程y"+ayˊ+by=Ce
x
的一个特解,则该方程的通解是( ).
选项
A、
B、
C、
D、
答案
A
解析
【思路探索】由解的定义,直接将解代入方程即可求得系数,进而又可从方程求得其通解.
将y=e
2x
+(x+1)e
x
代入原方程得(4+2a+b)e
2x
+(3+2a+b)e
x
+(1+a+b)xe
x
=Ce
x
,比较两边同类项系数得
(或将上式改写为(4+2a+b)e
2x
+(3+2a+b-C)e
x
+(1+a+b)xe
x
=0,因e
2x
,e
x
,xe
x
线性无关,故得(*)式.解方程组(*),得a=-3,b=2,C=-1,
于是原方程为y"-3yˊ+2y=-e
x
,
解得其通解为
.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/a2A4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
设f(x)在x=0处连续,且x≠0时,f(x)=,求曲线y=f(x)在x=0对应的点处的切线方程.
求满足微分方程yy”﹢1=(y’),及初始条件y(0)=1,y’(0)=的特解,并验证你所得到的解的确满足上述方程及所给初始条件.
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx;(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2。求实数a的值;
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=一AijATA=E且|A|=一1.
(1)求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.(2)求函数f(χ,y)=(χ2+2χ+y)ey的极值.
设其中Da为曲线所围成的区域。求a的值使Ia取得最小值。
设函数f(x)在x=0的某邻域内连续,且满足=-1,则x=0
求极限
随机试题
Youreallyhavetogetveryoldbeforeyourealizeyou’reold.I’minmymiddlefiftiesandIdon’tfeel【C1】______yet.However,
患者男,45岁。发热、乏力伴消瘦2个月,两侧颈部和腹股沟可触及数粒蚕豆大小淋巴结,脾肋下2cm,结核菌素试验(一),骨髓检查正常。如要确诊,应做的检查是
成年大型犬肾脏超声检查部位在
患有下列疾病的患者不宜行择期手术,但不包括
下列橡胶基防水卷材中,耐老化性能最好的是:[2017-043,2012-036]
雨水排放系统主要包括()。①房屋雨水管道系统和设备②街坊内雨水管渠系统③街道雨水管渠系统④雨水泵站及压力管
《建设工程安全生产管理条例》规定,特种作业人员必须按照国家有关规定经过专门的安全作业培训,并取得特种作业操作资格证书后,方可上岗作业。下述选项中不属于特种作业人员的是()。
根据《证券法》的规定,证券公司同时经营证券自营和证券资产管理业务的,其注册资本最低限额为()。
数据库系统的三级模式不包括( )。
IfoundIleftmykeyinthehouse______Iclosedmyfrontdoor.
最新回复
(
0
)