首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
admin
2018-12-21
60
问题
设二次型f(x
1
,x
2
,x
3
,x
4
)=x
1
2
﹢2x
1
x
2
-x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
41
﹢(a-1)
2
x
4
2
的规范形为y
1
2
﹢y
2
2
-y
3
2
,则参数a=______.
选项
答案
1/2
解析
法一 由二次型的规范形知,其正惯性指数为2,负惯性指数为1.利用配方法,有
f(x
1
,x
2
,x
3
,x
4
)=x
1
2
﹢2x
1
x
3
-x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2(x
2
-x
3
)
2
﹢x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2(x
2
-x
3
)
2
﹢(x
3
-ax
4
)
2
-(2a-1)x
4
2
,
故由f的正惯性指数为2,负惯性指数为1,应有a=1/2.
法二 f是四元二次型,由规范形知,其正惯性指数为2,负惯性指数为1,且有一项为零.故知其有特征值λ=0,故该二次型的对应矩阵A有|A|=0.因
转载请注明原文地址:https://kaotiyun.com/show/gAj4777K
0
考研数学二
相关试题推荐
(2007年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2009年)设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=_______.
(2010年)函数y=ln(1-2χ)在χ=0处的n阶导数y(n)(0)=_______.
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
如图8.11所示.[*]原式=[*]
3原式==3+0=3.
设x=x(y,z),y=y(z,x),z=z(x,y)都是方程F(x,y,z)=0所确定的隐函数,并且F(x,y,z)满足隐函数存在定理的条件,则=________.
[*]根据迫敛定理[*]
随机试题
甲县工商局对汤山纺织厂作山罚款200万元的处罚决定,并且立即执行。汤山纺织厂向市工商局申请复议,市工商局维持了处罚决定,纺织厂随后向法院提起诉讼,一审法院判决维持该处罚决定。汤山纺织厂提出上诉,在二审中才提出损害赔偿的要求,二审法院认定县工商局作出的处
依其控制的内容,经营者控制的可分为【】
酚妥拉明:
撤销权在性质上属于()。
由具有专业知识和经验的工程技术人员对资产的实体各主要部位进行观察,以判断确定被评估建筑物的损耗率的方法称为( )。
阅读《珍珠鸟》教学实录(片段),按照要求答题。师:(看图)在作者眼里,鸟是幸福的,作者也是幸福的。这是多么美好的意境呀!你能给书上的插图起个名字吗?(学生思考片刻,纷纷举手)生:“幸福人家”。生:“友谊地久天长”。
在一种网络游戏中,如果一位玩家在A地拥有一家旅馆,他就必须同时拥有A地和B地。如果他在C花园拥有一家旅馆,他就必须拥有C花园以及A地和B地两者之一。如果他拥有B地,他还拥有C花园。假如该玩家不拥有B地,可以推出下面哪一个结论?
若函数f(x)=(x-1)(x-2)(x-3)(x-4),则f’(x)的零点的个数为()。
America—thegreat"meltingpot"—hasalwaysbeenarichblendofculturaltraditionsfromallovertheworld.ManyAmericanfamil
Holdthereceiverasclosetoyourearaspossibleandtakedowneverywordofthemessage.
最新回复
(
0
)