首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
admin
2018-12-21
63
问题
设二次型f(x
1
,x
2
,x
3
,x
4
)=x
1
2
﹢2x
1
x
2
-x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
41
﹢(a-1)
2
x
4
2
的规范形为y
1
2
﹢y
2
2
-y
3
2
,则参数a=______.
选项
答案
1/2
解析
法一 由二次型的规范形知,其正惯性指数为2,负惯性指数为1.利用配方法,有
f(x
1
,x
2
,x
3
,x
4
)=x
1
2
﹢2x
1
x
3
-x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2(x
2
-x
3
)
2
﹢x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2(x
2
-x
3
)
2
﹢(x
3
-ax
4
)
2
-(2a-1)x
4
2
,
故由f的正惯性指数为2,负惯性指数为1,应有a=1/2.
法二 f是四元二次型,由规范形知,其正惯性指数为2,负惯性指数为1,且有一项为零.故知其有特征值λ=0,故该二次型的对应矩阵A有|A|=0.因
转载请注明原文地址:https://kaotiyun.com/show/gAj4777K
0
考研数学二
相关试题推荐
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2010年)函数y=ln(1-2χ)在χ=0处的n阶导数y(n)(0)=_______.
(2010年)曲线y=χ2与曲线y=alnχ(a≠0)相切,则a=【】
(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.
(2003年)设函数y=y(χ)在(-∞,+∞)内具有二阶导数,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)试将χ=χ(y)所满足的微分方程=0变换为y=y(χ)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
交换累次积分I的积分次序:I=.
设数列{xn}和{yn}满足.yn=0,则当n→∞时,{yn}必为无穷小的充分条件是()
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=O,该二次型的规范形为________
已知ξ=是矩阵A=的一个特征向量.(1)试确定a,b的值及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
随机试题
我国城乡特殊困难未成年人教育救助的对象包括()。
给定资料: 1.世界经济的迅猛发展带来了诸如资源短缺、环境污染、臭氧层被破坏、全球气候变暖、生态失衡等一系列世界性的环境恶化问题。同时,随之而来的环境污染对食物的危害,使人们认识到环境污染、自然生态系统失衡,最终将危及人类自身的生存和发展。许多国际环境公
(2001年第15题)某物质的肾阈是指
四神丸属于济川煎属于
疲劳断裂过程一般包括的阶段有()。
下列各项中,属于利得的有()。Ⅰ.出租投资性房地产收取的租金Ⅱ.投资者的出资额大于其在被投资单位注册资本中所占份额的金额Ⅲ.处置固定资产产生的净收益Ⅳ.持有可供出售金融资产因公允价值变动产生的收益
()主管部门应当会同同级房地产主管部门对物业服务收费明码标价进行管理。
学校教育制度的发展进程包括()
A—DomesticTradeB—InternationalTradeC—TermsofTradeD—Free-tradeAreaE—ImportF—Importer
Whatdoesthepassagemainlydiscuss?WhichofthefollowingconclusionsabouttheGrandCanyoncanbedrawnfromthepassage?
最新回复
(
0
)