首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
设二次型f(x1,x2,x3,x4)=x12﹢2x1x2-x22﹢4x2x3-x32-2ax3x41﹢(a-1)2x42的规范形为y12﹢y22-y32,则参数a=______.
admin
2018-12-21
61
问题
设二次型f(x
1
,x
2
,x
3
,x
4
)=x
1
2
﹢2x
1
x
2
-x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
41
﹢(a-1)
2
x
4
2
的规范形为y
1
2
﹢y
2
2
-y
3
2
,则参数a=______.
选项
答案
1/2
解析
法一 由二次型的规范形知,其正惯性指数为2,负惯性指数为1.利用配方法,有
f(x
1
,x
2
,x
3
,x
4
)=x
1
2
﹢2x
1
x
3
-x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2x
2
2
﹢4x
2
x
3
-x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2(x
2
-x
3
)
2
﹢x
3
2
-2ax
3
x
4
﹢(a-1)
2
x
4
2
=(x
1
﹢x
2
)
2
-2(x
2
-x
3
)
2
﹢(x
3
-ax
4
)
2
-(2a-1)x
4
2
,
故由f的正惯性指数为2,负惯性指数为1,应有a=1/2.
法二 f是四元二次型,由规范形知,其正惯性指数为2,负惯性指数为1,且有一项为零.故知其有特征值λ=0,故该二次型的对应矩阵A有|A|=0.因
转载请注明原文地址:https://kaotiyun.com/show/gAj4777K
0
考研数学二
相关试题推荐
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(1999年)计算
(2003年)设曲线的极坐标方程为ρ=eθ(a>0),则该曲线上相应于θ从0变到2π的一段弧与极轴所围成的图形面积为_______.
(2003年)设函数y=y(χ)在(-∞,+∞)内具有二阶导数,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)试将χ=χ(y)所满足的微分方程=0变换为y=y(χ)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0
(1990年)过P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形.求此平面图形绕χ轴旋转一周所成旋转体的体积.
(1990年)在椭圆=1的第一象限部分上求一点P,使该点处的切线、椭圆及两坐标轴所围图形面积为最小(其中a>0,b>0).
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:(1)I1=,其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2)I2=(eλx一e一λy)dσ,常数λ>0.
设(Ⅰ)的一个基础解系为写出(Ⅱ)的通解并说明理由.
随机试题
A.随机观察、会谈法B.定式访谈法C.定式观察法D.评定量表法E.心理测验
肺癌所致阻塞性肺炎有以下临床征象.除了
申请成为国家圃或专业圃的受理及审核机构均为直属检验检疫局。( )
下列税种中,属于财产税的是()。
心智技能与操作技能相比,具有()特点。
下面标点符号使用正确的一项是()。
在世界杯金靴奖的争夺中,如果斯内德没有获得金靴奖并且穆勒助攻次数比斯内德多的话,弗兰将获得金靴奖。补充以下哪项,能够推出斯内德获得了金靴奖?
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有二阶连续偏导数,求
Besides"American"characteristics-individualism,self-reliance,informality,punctualityanddirectness,therearealsosome"n
CurrentChallengesConfrontingU.S.HigherEducationThefirstchallenge:forceofthemarketplace•Currentsituation:—pr
最新回复
(
0
)