首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(1,1,1)T,(2,2,3)T均为线性方程组的解向量,则该线性方程组的通解为________。
设(1,1,1)T,(2,2,3)T均为线性方程组的解向量,则该线性方程组的通解为________。
admin
2019-03-18
44
问题
设(1,1,1)
T
,(2,2,3)
T
均为线性方程组
的解向量,则该线性方程组的通解为________。
选项
答案
k(1,1,2)
T
+(1,1,1)
T
,k∈R
解析
该线性方程组的系数矩阵为A=
。已知原方程组有两个不同的解,所以系数矩阵A不满秩,也即r(A)<3,又因为A的一个二阶子式
=一2≠0,
所以r(A)≥2。故r(A)=2。因此导出组Ax=0的基础解系中含有1个解向量,由线性方程组解的性质可知(2,2,3)
T
一(1,1,1)
T
=(1,1,2)
T
是Ax=0的解,即Ax=0的基础解系。
故原方程组的通解为k(1,1,2)
T
+(1,1,1)
T
,k∈R。
转载请注明原文地址:https://kaotiyun.com/show/a2V4777K
0
考研数学二
相关试题推荐
设函数fi(x)(i=1,2)具有二阶连续导数,且fi"(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量尼不能由α1,α2,α3线性表示,则对于任意常数k,必有
设矩阵A=若集合Ω={1,2),则线性方程组Ax=b有无穷多解的充分必要条件为
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ.(3)求A及[A-(3/2)E]6.
设则()
设讨论x=1处f[g(x)]的连续性.
(94年)设则有
随机试题
A.异烟肼中毒B.阿片类药物中毒C.三环类抗抑郁药中毒D.巴比妥类药物中毒E.苯二氮卓类镇静催眠中毒氟马西尼用于解救
A、糖尿病肾病B、狼疮性肾炎C、小血管炎D、抗GBM抗体型肾小球肾炎E、急性肾小球肾炎男性,60岁。有糖尿病史4年,关节痛伴恶心、乏力2周。化验:血常规WBC4×109/L,Hb86g/L,尿常规蛋白(++),RBC5—
国家药监局下达文件,通报恒发药业公司生产的药品质量低劣由此导致经销商纷纷退货,使该公司产品大量积压,损失巨大下列说法中正确的是()
一般而言,协定价格与市场价格间的差距越大,期权的时间价值越大;反之亦然。()
某公司上年年末支付每股股息为2元,预期回报率为15%,未来3年中超常态增长率为20%,随后的增长率为8%,则股票的价值为()。
某儿童开始认识到规则不是绝对的、一成不变的,而是可以协商或修改的。按照皮亚杰的道德发展阶段论,该儿童道德发展处于()。
来自公安机关的资料显示,娱乐圈中有人吸毒,高级知识分子中也有人吸毒,吸毒者中有些人是女性,而抢劫犯中有相当比例是吸毒者。由此可见()。
甲容器有浓度为3%的盐水190克,乙容器中有浓度为9%的盐水若干克,从乙容器中取出210克盐水倒入甲容器中,则甲容器中盐水的浓度是多少?()
中国古典戏剧作品塑造了王昭君、李香君、杜丽娘和崔莺莺等经典女性形象,下列作品与上述人物对应关系正确的是:
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵,现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(b),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
最新回复
(
0
)