首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题,正确的个数为 ( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞(x)dx=0; ②设f(x)在(一∞,+∞)上连续, ③若∫-∞+∞f(x)dx与∫-∞+∞g(x)dx都发散,则
以下4个命题,正确的个数为 ( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞(x)dx=0; ②设f(x)在(一∞,+∞)上连续, ③若∫-∞+∞f(x)dx与∫-∞+∞g(x)dx都发散,则
admin
2017-05-16
65
问题
以下4个命题,正确的个数为 ( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
(x)dx=0;
②设f(x)在(一∞,+∞)上连续,
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
[f(x)+g(x)]dx未必发散;
④若∫
-∞
+∞
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散.
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
-∞
+∞
f(x)dx收敛 存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时 ∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx.设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是 ∫
-∞
0
f(x)dx=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
(f(x)+g(x))dx收敛,这表明命题③是真命题.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/4wt4777K
0
考研数学二
相关试题推荐
证明下列函数(C1,C2为任意常数)是方程xy"+2y’-xy=ex的通解。
指出下列各题中的函数是否为所给微分方程的解。y"-2y’+y=0,y=x2ex
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式。
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(x)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
已知函数f(x)=求f(x)零点的个数.
随机试题
下列有关成本法的表述中,错误的是()。
在病理情况下,瞳孔扩大见于
以下哪种情况不需要抗结核药物的预防治疗
婴幼儿营养不良的诊断主要依据为
A.pmB.qdC.pmD.qhE.qn外文缩写及含义为每日()。
北京某公司拟与美国某公司共同出资设立一家中外合资经营企业,双方草拟了一份合营协议。依据我国有关法律规定,该协议中不正确的约定是:
背景资料:淮江湖行洪区退水闸为大(1)型工程,批复概算约为3亿元,某招标代理机构组织了此次招标工作。在招标文件审查会上,专家甲、乙、丙、丁分别提出了如下建议:甲:为了防止投标人哄抬报价,建议招标文件规定投标报价超过标底5%的为废标。
NoNobelprizehasyetbeenawardedfortheinventionofanelixiroflife,buttheprizeitselfseemstobeone.That,atleast
WhatisNOTtheeffectproducedbyclimatechangetotheInuit?
ProfessorKumarBhatt,founderandheadofWarwickManufacturingGroup(WMG),andRobMeakin,apersonneldirectoratMarconi,ha
最新回复
(
0
)