首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为偶函数,且∫-∞+∞f(x)dx=C(C为常数),记F(x)=∫-∞xf(t)dt,则对任意a∈(一∞,+∞),F(一a)等于( )
设f(x)为偶函数,且∫-∞+∞f(x)dx=C(C为常数),记F(x)=∫-∞xf(t)dt,则对任意a∈(一∞,+∞),F(一a)等于( )
admin
2017-05-16
76
问题
设f(x)为偶函数,且∫
-∞
+∞
f(x)dx=C(C为常数),记F(x)=∫
-∞
x
f(t)dt,则对任意a∈(一∞,+∞),F(一a)等于( )
选项
A、F(a)
B、一F(a)
C、C一∫
0
a
f(x)dx.
D、
答案
D
解析
由于∫
-∞
+∞
f(x)dx=C,又f(x)为偶函数,应有C=2∫
-∞
0
f(x)dx,即∫
-∞
0
f(x)dx=
F(一a)=∫
-∞
-a
f(x)dx=∫
-∞
0
f(x)dx+∫
0
-a
f(x)dx=
其中
∫
0
a
f(-t)(-dt)=一∫
0
a
f(x)dx,所以F(-a)=
.故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/lwt4777K
0
考研数学二
相关试题推荐
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)-f(1)]试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=的解。
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)________。
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求F(x)所满足的一阶微分方程。
求微分方程xy’+y-ex=0满足条件y|x=1=e的特解。
写出由下列条件确定的曲线所满足的微分方程。曲线上点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设f(x+y,x-y)=ex2+y2(x2-y2),求函数f(x,y)和的值.
求曲线在拐点处的切线方程.
求下列极限:
设函数f(x)=x2(x-1)(x-2),则f’(x)的零点个数为
随机试题
女,48岁。患肝炎已10余年,因无力、纳差、腹胀40天诊断为肝炎后肝硬化(失代偿期)入院,肝功能试验显著异常,其中清蛋白降低,球蛋白增高,清蛋白/球蛋白比例倒置。为治疗低蛋白血症,首选的血液制品是()
对于一个主机WWW.hava.gxou.com.cn来说,主机名是()
中药泛油的原因有
郝某及蓝洋有限责任公司等4位发起人拟通过募集设立方式设立博乐股份有限公司。在募集设立的过程中,下列做法错误的是()。
某市政立交桥工程采用钻孔灌注桩基础,八棱形墩柱,上部结构为跨径25m后张预应力混凝土箱梁。桩基主要穿过砾石土(砾石含量少于20%,粒径大于钻杆内径2/3)。钻孔灌注桩工程分包给专业施工公司。钻孔桩施工过程中发生两起情况:(1)7#桩成孔过程中出现较严重坍
新课程改革倡导()的课程评价。
(2013年真题)甲、乙结婚多年。某日,甲外出后失踪,乙四处寻找仍无结果。五年后,乙欲与丙登记结婚。根据我国民法相关规定,下列选项中正确的是()。
设fˊˊ(x)∈C[a,b],证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)ffˊˊ(ξ).
下列叙述中正确的是()。
在已经建立的数据表中,若在显示表中内容时使某些字段不能移动显示位置,可以使用的方法是()。
最新回复
(
0
)