首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a,b的不同取值情况讨论方程组 何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解。
就a,b的不同取值情况讨论方程组 何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解。
admin
2021-01-31
38
问题
就a,b的不同取值情况讨论方程组
何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解。
选项
答案
D=[*]=(a-6)(a+1) (1)当a≠-1,b≠6时,方程组只有唯一解; (2)当a=-1时, [*] (1)当a≠-1,b≠36时,方程组无解; (2)当a=-1,b=36时,方程组有无数个解; 由A=[*]得 方程组的通解为 X=k[*](其中k为任意常数)。 (3)当a=6,b为任意值时, [*] 因为rA=r([*])=3<4,所以方程组有无数个解,通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/a4x4777K
0
考研数学三
相关试题推荐
(2006年)求幂级数的收敛域及和函数S(x).
设an=(n=0,1,2,…).求
(90年)求级数的收敛域.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
设矩阵有解但不唯一。(I)求a的值;(Ⅱ)求可逆矩阵P,使得P一1AP为对角矩阵;(Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
设f(x)在[a,b]上二阶可导,且f(x)>0,下面不等式f(a)(b一a)<∫abf(x)dx<(b—a)成立的条件是()
已知一批零件的长度X(单位为cm)服从正态总体N(μ,1),从中随机抽取16个零件,测得其长度的平均值为40cm,则μ的置信度为0.95的置信区间是(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95)().
函数f(x)=(x2+x一2)|sin2πx|在区间上不可导点的个数是()
已知,y1=x,y2=x2,y3=ex为方程y"+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
积分∫0πe-2xsinxdx=________.
随机试题
下列各状态不属于初级生态系统的有()
下列关于居民健康档案服务要求的叙述,不正确的是
A.持续吸入维持量皮质激素6个月~2年B.早期,较大剂量静滴琥珀酸氢化可的松C.吸入β-肾上腺素能受体激动剂+肾上腺皮质激素类D.口服肾上腺皮质激素E.口服β-肾上腺素能受体激动剂
下列哪种情形属于一行为同时犯数罪?
诉讼文书一般由首部、正文(事实与理由部分)、尾部组成,下列哪些选项属于法院刑事判决书中的理由部分?
下列各项中属于企业会计核算方法的有()。
小王每天到学校要爬一段有8阶的楼梯,他每次可以任跨l阶或2阶或3阶。例如,小王可以先跨3阶,再跨1阶,再跨2阶。试问小王总共有多少种方法爬这段楼梯?()
【2013陕西NO.37】罗马是一座古色古香、历史悠久、充满__________和艺术气息的城市,是用艺术品装饰得最多的地方,是__________的露天开放博物馆,具有独特风格,万般诱人。但也有人说,罗马__________,小偷多,骗子多,不如其他欧洲
KateandMaryaxemy______.KateandMarygoto______school(s).
WhetheryouarehikingthroughthemagnificentredwoodsofNorthernCalifornia,sleepingunderthebrilliantstarsoftheTexas
最新回复
(
0
)