首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2019-06-25
74
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α
2
+α
3
] [*] 由(Ⅰ)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xTJ4777K
0
考研数学三
相关试题推荐
10件产品中4件为次品,6件为正品,现抽取2件产品.逐个抽取,求第二件为正品的概率.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.
设且A~B.求可逆矩阵P,使得P-1AP=B.
设是矩阵的特征向量,则a=_________,b=___________.
设总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设总体X的密度函数为求参数θ的矩估计量和最大似然估计量.
设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过5的概率.
设y=ex为微分方程xy′+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
随机试题
WindowsXP属于计算机软件系统中的
患者,男,36岁。3年来出现劳累后胸闷、头晕,1小时前因胸闷自用硝酸甘油片后感头晕加重,并出现短暂黑朦而来院。既往无高血压病史,无烟酒史,其父有类似病史。查体:血压120/70mmHg,脉率68次/分,双肺(-),心界不大,心律整,胸骨左缘3~4肋间可闻3
在投标报价阶段,为既不提高总价且不影响中标,又能在结算时得到更理想的效益,组价以后可以做怎样的单价调整?A公司就措施项目向业主索赔是否妥当?说明理由。本工程是什么方式的计价合同?它有什么特点?
我某出口公司按CIF条件出售货物一批,合同规定凭信用证付款,买方在约定的时间内未开来信用证。由于合同规定的装运期已到,为了重合同、守信用,我方仍应按时发货,以免影响对外信誉。()
在已经建立了社会养老保险计划的国家,员工薪酬中包含了被代扣的和延期支付的养老保险成本。这部分预缴款在人们退休前应列入()
甲企业(非外商投资企业)2002年12月10日以350000元的价格,转让已使用2年的用设备,转让时未发生其他相关税费,款项已收讫。根据账面记录,甲设备系2年前接受外商捐赠,入账时根据有关发票、报关单等单据确定的价值为500000元,同时用银行存款支付运输
制胜规律是指在竞赛规则的限定内,教练员、运动员是在竞赛中战胜对手、争取优异运动成绩所必须拥有的主观意识。()
已知在文件IN.DAT中存有若干个(个数
ProblemsoftheElderlyGerontologists(老年人问题学者)studyhowoldpeoplearetreatedwithinasocietyandhowtheelderlydeal
A、Aregularlicensewillcostmuchmoremoney.B、Aregularlicensehasashortereffectiveperiod.C、Afive-yearlicenseismuch
最新回复
(
0
)