首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm均为n维向量,那么下列结论正确的是( ).
设α1,α2,…,αm均为n维向量,那么下列结论正确的是( ).
admin
2020-06-05
63
问题
设α
1
,α
2
,…,α
m
均为n维向量,那么下列结论正确的是( ).
选项
A、若k
1
α
1
+k
2
α
2
+…+k
m
α
m
=0,则α
1
,α
2
,…,α
m
线性相关
B、若对任意一组不为零的数k
1
,k
2
,…,k
m
,都有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0,则α
1
,α
2
,…,α
m
线性无关
C、若α
1
,α
2
,…,α
m
线性相关,则对任意一组不全为零的数k
1
,k
2
,…,k
m
,都有k
1
α
1
+k
2
α
2
+…+k
m
α
m
=0
D、若0α
1
+0α
2
+…+0α
m
=0,则α
1
,α
2
,…,α
m
线性无关
答案
B
解析
方法一
对照线性相关的定义,选项(A),(D)显然不正确,(A)中缺条件“k
1
,k
2
,…,k
m
不全为零”;而(D)是一个恒等式,不管向量组α
1
,α
2
,…,α
m
线性相关与否均成立.对于选项(C),若α
1
,α
2
,…,α
m
线性相关,则存在一组不全为零的数k
1
,k
2
,…,k
m
,使得x
1
α
1
+x
2
α
2
+…+x
m
α
m
=0.但这不能说明任意一组不全为零的数k
1
,k
2
,…,k
m
,都有x
1
α
1
+x
2
α
2
+…+x
m
α
m
=0,故(C) 不正确.故而应选(B).
方法二
命题“若对任意一组不为零的数k
1
,k
2
,…,k
m
,都有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0”的逆否
命题为“如果x
1
α
1
+x
2
α
2
+…+x
m
α
m
=0,那么k
1
,k
2
,…,k
m
全为零”,也就是“α
1
,α
2
,…,α
m
线性无关”.故(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/a8v4777K
0
考研数学一
相关试题推荐
设有直线L1:则L1与L2的夹角为()
4阶行列式的值等于()
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
n阶矩阵A和B具有相同的特征值是A和B相似的()
设A为三阶矩阵,1,1,2是A的三个特征值,α1,α2,α3分别为对应的三个特征向量,则().
设n维行向量矩阵A=E一αTa,B=E+2αTa,则AB=()
设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
(Ⅰ)求幂级数的收敛半径、收敛区间及收敛域,并求收敛区间内的和函数.(Ⅱ)求数项级数的和,应说明理由.
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角阵,说明理由.
随机试题
设函数f(x)=x2(一π<x<π)的傅里叶级数展开式,则其系数a2=_______.
该病人的最可能的诊断是该病人治疗中最主要的是
按形态学分类,再生障碍性贫血属于
治疗胃痛饮食停滞证,应首选()
女,43岁,右下腹持续性疼痛5天,伴恶心、呕吐,呕出物为胃内容物。体温38.5℃。体检发现右下腹5cm×5.5cm大小肿块,触痛明显。最可能的诊断是
(2005年)某投资项目全投资的净现金流量如下:若该项目初始投资中借款比例为50%,贷款年利率为8%,初始投资中自有资金的筹资成本为12%,则当计算该项目自有资金的净现值时,基准折现率至少应取()。
一个单因素方差分析中,已知F(2,24)=0.90。则F检验的结果
吴敬梓《儒林外史》
Properlightingisanecessaryforgoodeyesighteventhoughhumannightvisioncanbetemporarilyimpairedbyextremeflasheso
OnethingisclearafterthetragicdeathofFreddieGray,theyoungAfrican-Americanmanwhowasfatallyinjuredwhileinpolic
最新回复
(
0
)