首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm均为n维向量,那么下列结论正确的是( ).
设α1,α2,…,αm均为n维向量,那么下列结论正确的是( ).
admin
2020-06-05
83
问题
设α
1
,α
2
,…,α
m
均为n维向量,那么下列结论正确的是( ).
选项
A、若k
1
α
1
+k
2
α
2
+…+k
m
α
m
=0,则α
1
,α
2
,…,α
m
线性相关
B、若对任意一组不为零的数k
1
,k
2
,…,k
m
,都有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0,则α
1
,α
2
,…,α
m
线性无关
C、若α
1
,α
2
,…,α
m
线性相关,则对任意一组不全为零的数k
1
,k
2
,…,k
m
,都有k
1
α
1
+k
2
α
2
+…+k
m
α
m
=0
D、若0α
1
+0α
2
+…+0α
m
=0,则α
1
,α
2
,…,α
m
线性无关
答案
B
解析
方法一
对照线性相关的定义,选项(A),(D)显然不正确,(A)中缺条件“k
1
,k
2
,…,k
m
不全为零”;而(D)是一个恒等式,不管向量组α
1
,α
2
,…,α
m
线性相关与否均成立.对于选项(C),若α
1
,α
2
,…,α
m
线性相关,则存在一组不全为零的数k
1
,k
2
,…,k
m
,使得x
1
α
1
+x
2
α
2
+…+x
m
α
m
=0.但这不能说明任意一组不全为零的数k
1
,k
2
,…,k
m
,都有x
1
α
1
+x
2
α
2
+…+x
m
α
m
=0,故(C) 不正确.故而应选(B).
方法二
命题“若对任意一组不为零的数k
1
,k
2
,…,k
m
,都有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0”的逆否
命题为“如果x
1
α
1
+x
2
α
2
+…+x
m
α
m
=0,那么k
1
,k
2
,…,k
m
全为零”,也就是“α
1
,α
2
,…,α
m
线性无关”.故(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/a8v4777K
0
考研数学一
相关试题推荐
4阶行列式的值等于()
设随机变量x~t(n)(n>1),Y=,则()
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则
设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是()
已知A是三阶实对称矩阵且不可逆,又知Aα=3α,Aβ=β,其中α=(1,2,3)T,β=(5,1,t)T,则下列命题正确的是().①A必可相似对角化②必有t=-1③γ=(1,16,-11)T必是A的特征向量④|A—E|必为0
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵曰,A*,B*分别为A,B的伴随矩阵,则
曲线y=的切线与x轴和y由围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积,当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设A、B、A+B、A—1+B—1均为n阶可逆方阵,则(A—1+B—1)—1=
设分块矩阵是正交矩阵,其中A、C分别为m,n阶方阵,证明:A、C均为正交矩阵,且B=0.
(03年)设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A)=秩(B);
随机试题
叶天士认为,风温的发生是因为
解决自主对羞愧的危机的年龄段是
男性,18岁。病腹泻三天,伴腹痛腹胀,大便黏腻不爽,里急后重,四肢酸重无力,发热汗出,舌苔黄腻,脉濡数。治疗此证,宜首选的药物是()。
处方炒三仙、焦三仙中,“三仙”的组成是()。
认知行为理论关于助人目标的原则不包括()。
=_______.
[A]essentially[B]influenced[C]dominant[D]contrary[E]decrease[F]engaged[G]consistency[H]various[I]function[J]medium[K]c
A、Gettingacquaintedwiththehumanresourcespersonnel.B、Findingoutwhythecompanyprovidesthejobopening.C、Figuringout
RaisingWiseConsumersAlmostanyonewithaprofitmotiveismarketingtoinnocents.Helpyourkidsunderstandit’sOKnott
WhytheSuper-RichAren’tLeavingMuchofTheirFortunestoTheirKidsA)WhatdoSting,BillGatesandWarrenBuffetthaveinco
最新回复
(
0
)