首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设微分方程xf”(x)-f’(x)=2x. (I)求上述微分方程的通解; (Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
设微分方程xf”(x)-f’(x)=2x. (I)求上述微分方程的通解; (Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
admin
2018-12-21
51
问题
设微分方程xf
”
(x)-f
’
(x)=2x.
(I)求上述微分方程的通解;
(Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f
’
(0)及f
”
(0)的存在性,要求写出推理过程.
选项
答案
(I)当x≠0时,原微分方程可改写为 f
”
(x)=-[*]f
’
(x)=2. 由通解公式,有 [*] 所以f(x)﹦∫2xln︱x︱dx±[*]x
2
﹢C
2
﹦∫ln︱x︱d(x
2
)±[*]x
2
﹢C
2
﹦x
2
ln︱x︱﹣∫[*]x
2
﹢C
2
﹦x
2
ln︱x︱﹣[*]x
2
﹢C
2
﹦x
2
ln︱x︱﹢[*]x
2
﹢C
2
,x≠0, 其中[*]与C
2
为任意常数. (Ⅱ)又因为[*]x
2
ln|x|=0,对每一个解补充定义f(0)=C
2
后,有 [*] 其中[*]ln|x|=-∞.所以f
”
(0)不存在.
解析
转载请注明原文地址:https://kaotiyun.com/show/aAj4777K
0
考研数学二
相关试题推荐
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2015年)设矩阵,若集合Ω={1,2}则线性方程组Aχ=b有无穷多解的充分必要条件为【】
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2002年)已知函数f(χ)在(0,+∞)上可导,f(χ)>0,f(χ)=1,且满足求f(χ).
(2010年)函数y=ln(1-2χ)在χ=0处的n阶导数y(n)(0)=_______.
(2008年)微分方程(y+χ2e-χ)dχ-χdy=0的通解是y=_______.
(1987年)求(a,b是不全为零的非负常数).
(1996年)设函数f(χ)在区间(-δ,δ)内有定义,若当χ∈(-δ,δ)时,恒有|f(χ)|≤χ2,则χ=0必是f(χ)
(1997年)设在区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫ab(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组的通解,并说明理由.
随机试题
喷射除锈和工具除锈分别包括4个和3个等级,用Sa和St加以区别。
马克思主义哲学认为,人的认识活动包括的基本要素是()。
心脉痹阻证可出现
羊水栓塞病理诊断的主要依据
对1年前作过口腔检查的200名患者进行口腔健康检查时,发现了40个新龋需治疗。描述这种情况的指标是
某省属重点水利工程项目计划于2013年12月28日开工,由于坝肩施工标段工程复杂,技术难度高,一般施工队伍难以胜任,业主自行决定采取邀请招标方式,于2013年9月8日向通过资格预审的A、B、C、D、E五家施工承包企业发出了投标邀请书。该五家企业均接受了邀请
关于“职业纪律”,说法正确的有()。
阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。【说明】某高校计划建设校园一卡通项目,选择了具有自主一卡通产品的A公司作为系统集成商。项目的主要内容是对学校的三个学生食堂、一个图书馆、一个体育馆实现统一管理,并与学校的后勤保障和财
GenerationsofAmericanshavebeenbrought【C1】______tobelievethatagoodbreakfastisimportantforhealth.Eatingbreakfasta
HappinessisU-shaped,forwearehappieratthestartandendofourlivesbuthitaslumpwhenweare【C1】______,BritishandU
最新回复
(
0
)