首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)内二阶可导,且x∈(0,+∞)都有f"(x)≠0,过曲线y=f(x)(0<x<+∞)上的任意一点(x0,f(x0))作切线,证明:除切点外,该切线与曲线y=f(x)无交点。
设函数f(x)在[0,+∞)内二阶可导,且x∈(0,+∞)都有f"(x)≠0,过曲线y=f(x)(0<x<+∞)上的任意一点(x0,f(x0))作切线,证明:除切点外,该切线与曲线y=f(x)无交点。
admin
2022-03-23
107
问题
设函数f(x)在[0,+∞)内二阶可导,且
x∈(0,+∞)都有f"(x)≠0,过曲线y=f(x)(0<x<+∞)上的任意一点(x
0
,f(x
0
))作切线,证明:除切点外,该切线与曲线y=f(x)无交点。
选项
答案
方法一 反证法,假设以点(x
0
,f(x
0
))为切点的切线与曲线y=f(x)交于(x
1
,f(x
1
))且x
0
≠x
1
,在[x
0
,x
1
](或[x
1
,x
0
])上用拉格朗日中值定理,[*]ξ
1
∈(x
0
,x
1
)(或(x
1
,x
0
)),使得 [*]=f’(ξ
1
)=f’(x
0
) 由罗尔定理知,存在ξ
2
∈(0,ξ
1
)(或(ξ
1
,x
0
)),使得f"(ξ
2
)=0,矛盾。 方法二 不妨设f"(x)>0,设F(x)=f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)],则有 F’(x)=f’(x)-f’(x
0
),F”(x)=f"(x)>0 而F’(x
0
)=0,所以当x>x
0
时,F’(x)>0,当x<x
0
时,F’(x)<0,因此x=x
0
为F(x)的最小值点,F(x)>F(x
0
)=0(x≠x
0
),即 f(x)>f(x
0
)+f’(x
0
)(x-x
0
),[*]x∈(0,+∞)且x≠x
0
因此切线与曲线除切点外不相交。 其实f"(x)≠0说明曲线y=f(x)是凹的或者是凸的,欲证明y=f(x)和y=f(x
0
)+f’(x
0
)(x-x
0
)除切点外不相交,即证它们的差除切点外没有零点。
解析
转载请注明原文地址:https://kaotiyun.com/show/aBR4777K
0
考研数学三
相关试题推荐
设随机变量X的分布函数F(x)只有两个间断点,则().
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
过曲线y=(x≥0)上的一点A作切线,使该切线与曲线及x轴所围成的平面区域的面积为,所围区域绕x轴旋转一周而成的体积为.
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为销售量,求:(I)当每件商品的征税额为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
设an>0(n=1,2,…)且{an}n=1∞,单调减少,又级数的敛散性.
设为两个正项级数.证明:
设X~U(-1,1),Y=X2,判断X,Y的独立性与相关性.
设(X,Y)~f(x,y)=(1)判断X,Y是否独立,说明理由;(2)判断X,Y是否不相关,说明理由;(3)求Z=X+Y的密度.
当x→0时,(1+xsin2x)a-1~1-cosx,求a.
随机试题
根据《治安管理处罚法》的规定,在违反治安管理的行为中可以减轻或者免予处罚的情形有()。
确诊肌筋膜炎的主要依据是
关于司法的表述,下列哪些选项可以成立?(2007年试卷一第54题)
纯棉钩编马甲
下列各项中,不属于单位会计档案专业资料的是()。
经验表明,基于运输的公司要比基于设施的公司转为综合物流服务更容易更简单些。
Therearesomespeakingactivities.Whichofthefollowingmainlyfocusesontheformandaccuracy?
TeapickedattheQingmingFestivalisfavoredbypeople______itstenderness,freshness,andgreenness.
不等式|5x+1|+x>2的解集为()。
TCP/IP(1)_____layerprotocolsprovideservicestotheapplication(2)_____runningonacomputer.Theapplicationlayerdoes
最新回复
(
0
)