首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)有二阶导数,且f"(x)>0,f(0)=0,fˊ(0)=0,求,其中u是曲线y=f(x)上点P(x,f(x))处的切线在x轴上的截距.
设函数y=f(x)有二阶导数,且f"(x)>0,f(0)=0,fˊ(0)=0,求,其中u是曲线y=f(x)上点P(x,f(x))处的切线在x轴上的截距.
admin
2019-08-21
42
问题
设函数y=f(x)有二阶导数,且f"(x)>0,f(0)=0,fˊ(0)=0,求
,其中u是曲线y=f(x)上点P(x,f(x))处的切线在x轴上的截距.
选项
答案
曲线y=f(x)在点p(x,f(x))处的切线方程为 Y-f(x)=fˊ(x)(X-x) 令Y=0,则有X=x-f(x)/fˊ(x),由此u=x-f(x)/fˊ(x),且有 [*] 由f(x)在x=0处的二阶泰勒公式 [*] 得 [*]
解析
先求出曲线在点p(x,f(x))处的切线方程,进而得其在x轴上的截距u,再写出f(x)在x=0处的二阶泰勒展开式,代入表达式求极限即可.
转载请注明原文地址:https://kaotiyun.com/show/aKN4777K
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程sinx+2y—z=ez所确定,则
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x—C处带拉格朗日型余项的一阶泰勒公式;
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
设B=2A—E,证明:B2=E的充分必要条件是A2=A.
设f(x,y)连续,且f(x,y)=ex2+y2+xyxyf(x,y)dxdy,其中D表示区域0≤x≤1,0≤y≤1,则=()[img][/img]
随机试题
下列属于美国艺术家安迪.沃霍尔作品的是()。[河南2019]
关于艾滋病,正确的是()
患者男,30岁。夏天在田地里劳作时,突然出现头痛、头晕、恶心,继而出现口渴、胸闷、面色苍白、冷感淋漓、脉搏细速、血压下降,后晕倒在地。该患者最可能发生了()
对出具的计量检定证书和校准证书,以下_________项要求是必须满足的基本要求。
决定着经纪企业在规模扩大时能否保持乃至提高其整体服务质量和水准的是()。
当事人申请仲裁,应当符合的条件不包括()。
企业重组,是指企业在日常经营活动以外发生的法律结构或经济结构重大改变的交易。重组形式包括()。
1694年()银行的成立,标志着资本主义现代商业银行制度开始形成。
遇到下榻的酒店发生火灾,导游员要带领游客自救,以下采取的正确做法有()。
在就业者中存在一种“多元的幻觉”:认为在这个多元开放的时代,每个人对自己的未来负责,对未来之路的选择是多元的、自由的。但看看现实就知道,这种选择下的目标指向是一元的,大家都一窝蜂地流向了城市,盯住了高薪白领职位,以为是个性选择,实际都汇合进同一条河流;以为
最新回复
(
0
)