首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使=0.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使=0.
admin
2017-12-31
47
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
=0.
选项
答案
令φ(x)=f(x)∫
x
b
g(t)dt+g(x)∫
a
x
f(t)dt, φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且 φ’(x)=[f’(x)∫
x
b
g(t)dt-f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(t)dt] =f’(x)∫
x
b
g(t)dt+g’(x)∫
a
x
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ’(ξ)=0,即 f’(ξ)∫
ξ
b
g(t)dt+g’(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0, 从而就有∫
x
b
g(t)dt>0,于是有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/aWX4777K
0
考研数学三
相关试题推荐
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
计算,其中n>2.
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
求极限
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ex-xz=0所确定,求
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。证明α1,α2,α3线性无关;
设A为n阶非零方阵,且存在某正整数m,使Am=0.求A的特征值并证明A不与对角矩阵相似。
已知下列非齐次线性方程组(Ⅰ)(Ⅱ):求解方程组(Ⅰ),用其导出组的基础解系表示通解;
设X的密度为求:(1)常数C和X的分布函数F(x);(2)P(0≤X≤1)及Y=e-|X|的密度fY(y)。
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
随机试题
丞相祠堂何处寻?锦官城外柏森森。映阶碧草自春色,隔叶黄鹂空好音。三顾频烦天下计,两朝开济老臣心。出师未捷身先死,长使英雄泪满襟。如何理解“三顾频烦天下计,两朝开济老臣心”两句?
根据中文提示,将对话中缺少的内容写在线上。这些句子必须符合英语表达习惯。打句号的地方,用陈述句;打问号的地方,用疑问句。提示:在一次Mary举行的生日晚会上,她的女朋友Linda见到了Mary的表弟Steve。她想结识他。Mary给他们做了介绍。
Mostorganismsmustfitinwiththeirsurroundingsbecausetheirskillstoaltertheirenvironmentarerestrictedandhighlyspe
胃壁的黏液细胞可分泌
A.花粉B.油漆C.自身变性的IgGD.Rh抗原E.内啡肽可引起Ⅳ型超敏反应的变应原
患者老年男性,近来大便次数增多,伴有排便不尽感,偶有便血,量少,色不鲜。该患者应首先进行的检查方法是:
A、氯霉素B、头孢噻肟钠C、克拉霉素D、克拉维酸钾E、阿米卡星单独使用无效,常与其他抗生素联合使用的是
农村居民经批准在户籍所在地按照规定标准占用耕地,建设自用住宅,可以免征耕地占用税。()
Animportantpointinthedevelopmentofagovernmentalagencyisthecodificationofitscontrollingpractices.Thestudyofla
Whichofthesefollowingstatementsiscorrect?
最新回复
(
0
)