首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有 ∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y)。
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有 ∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y)。
admin
2018-05-25
62
问题
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫
L
2xydx+Q(x,y)dy与路径无关,并且对任意t恒有
∫
(0,0)
(t,1)
2xydx+Q(x,y)dy=∫
(0,0)
(t,1)
2xydx+Q(x,y)dy,求Q(x,y)。
选项
答案
由于曲线积分∫
L
Pdx+Qdy与路径无关,则[*](其中P,Q有连续偏导数),即 [*] 对x积分得Q(x,y)=x
2
+φ(y),其中φ(y)待定。对于任意的t,则有 ∫
(0,0)
(t,1)
2xydx+[x
2
+φ(y)]dy=∫
(0,0)
(t,1)
2xydx+[x
2
+φ(y)]dy。 (*) 下面由此等式求φ(y)。 由于 2xydx+[x
2
+φ(y)]dy=ydx
2
+x
2
dy+φ(y)dy =d(x
2
y)+d(∫
0
y
φ(s)ds)=d(x
2
y+∫
0
y
φ(s)ds)。 于是由(*)式得 (x
2
y+∫
0
y
φ(s)ds)|
(0,0)
(t,1)
=(x
2
y+∫
0
y
φ(s)ds)|
(0,0)
(t,1)
, 即t
2
+∫
0
1
φ(s)dx=t+∫
0
t
φ(s)ds,亦即t
2
=t+∫
1
t
φ(s)dx。求导得2t=1+φ(t),即φ(t)=2t一1。 因此Q(x,y)=x
2
+2y一1。
解析
转载请注明原文地址:https://kaotiyun.com/show/jGg4777K
0
考研数学一
相关试题推荐
设空间区域
设b为常数,并设介于曲线与它的斜渐近线之间的从x=1延伸到x→+∞的图形的面积为有限值,求b及该面积的值.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程Aχ=b的通解.
若f(-1,0)为函数f(χ,y)=e-χ(aχ+b-y2)的极大值,则常数a,b应满足的条件是
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
已知平面区域D={(x,y)|x2+y2≤1),L为D的边界正向一周.证明:
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量.
I=∫Г(x2-yz)dx+(y2-xz)dy+(z2-xy)dz,其中Г是沿螺线x=acosθ,y=asinθ,z=θ,从A(a,0,0)到B(a,0,h)的有向曲线.
随机试题
A—cashbusinessJ—modeofpaymentB—commissionreceivablesK—downpaymentC—loanextensionL—repaym
A.强碱烧伤(不包括生石灰)B.电弧烧伤C.电接触伤D.生石灰烧伤E.硫酸烧伤创面有逐渐加深的特点
如图5-17所示,用冲床在厚度为t的钢板上冲出一圆孔,则冲力大小()。
某电解铝厂位于甲市郊区,已经生产十年,现有工程规模为7万t/a电解铝,主要设备为60kA自焙阳极电解槽160台,产量20000t/a;120kA预焙阳极电解槽120台,产量50000t/a。自焙阳极电解槽含氟烟气采用干法净化回收装置,但由于其设计存在一些问
基金职业道德修养的方法不包括()。
基础金融衍生产品不包括()。
(2014年单选36)赵某死亡后,甲依遗嘱继承了一套房屋(价值180万元),乙依遗赠分得一幅字画(价值40万元),丙依法定继承分得现金60万元。遗产分割完毕后,赵某的债权人找到甲、乙、丙,要求偿还欠款40万元。该欠款应()。
糖果厂生产的奶油糖每袋售价5.4元,如果每周销售量(单位:千袋)为Q时,每周总成本为C(Q)=2400+4000Q+100Q2(元),设价格不变,求(1)可以获得利润的销售量范围;(2)每周销售量为多少袋时,可以获得最大利润?
对长度为n的线性表作快速排序,在最坏情况下,比较次数为
A、TRUEB、FALSEA
最新回复
(
0
)