首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2016-07-22
45
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, 等式两边左乘A,得(k+k
1
+…+k
t
)Aβ=0[*]k+k
1
+…+k
t
=0,则k
1
α
1
+…+k
t
α
t
=0 由α
1
,α
2
,…,α
t
线性无关,得k
1
=…k
t
=0[*]k=0,所以β,β+α
1
,β+α
2
,…,β+α
t
线性无关
解析
转载请注明原文地址:https://kaotiyun.com/show/aew4777K
0
考研数学一
相关试题推荐
证明:当0<x<1时,
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x-y)dxdy=∫-aaf(t)(a-|t|)dt,其中D为矩形区域:|x|≤a/2,|y|≤a/2,a>0为常数;
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x.若f’(0)=0,求f(u)的表达式.
已知非零向量a,b不共线,设c=λa+b,其中λ为实数,证明:|c|取最小值时的向量c垂直于a.
求向量场A=(x-z)i+(x3+yz)j-3xy2k在闭曲线L:从z轴正向看逆时针的环流量.
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设A为三阶矩阵,α1,α2为A的属于特征值1的线性无关的特征向量,α3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为().
已知矩阵A=设三阶矩阵B=(α1,α2,α3)满足B2=BA.记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合.
随机试题
计算机网络中可以共享的资源包括:硬件、软件和()。
工业企业成本计划包括的内容有()
下列哪项不是慢性湿疮的临床表现
双子叶植物根及根茎断面有一圈环纹,它是__部位
鼻饲法不适用于
某市的商品房价格迅速上涨,一度形成恐慌性抢购的市场局面。市民张某连续购买了多套商品住房。但他既不自住,也不出租。只想价格更高后卖出。随着房价上涨,该市的房价租金比也大幅上涨,有人认为该市房地产泡沫严重,但也有人认为房价收入比并不高,房价合理。2010年,该
通过求诊者的观察和模仿来矫正其适应不良行为与神经症反应的方法是()。
()是我国教育性质的根本所在。
确定会场的整体格局要根据()。
设f(x)在[a,b]上连续,在(a,b)内可导,且,求证在(a,b)内至少存在一点ξ,使得f’(ξ)=0.
最新回复
(
0
)