首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
[2005年] 确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
admin
2019-05-10
44
问题
[2005年] 确定常数a,使向量组α
1
=[1,1,a]
T
,α
2
=[1,a,1]
T
,α
3
=[a,1,1]
T
可由向量组β
1
=[1,1,a]
T
,β
2
=[一2,a,4]
T
,β
3
=[一2,a,a]
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
由题目要求,需求满足两个条件的常数a.条件之一是方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
有解,即α
i
可由β
1
,β
2
,β
3
线性表示.条件之二是方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
j
无解,即β
i
不能由α
1
,α
2
,α
3
线性表示.由这两个条件来确定a的取值,也可从比较两向量组(或矩阵)秩的大小人手求出a. 解一 因α
1
,α
2
,α
3
均可由向量组β
1
,β
2
,β
3
线性表示,故三个方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
(i=1,2,3)均有解.对增广矩阵[β
1
,β
2
,β
3
:α
1
,α
2
,α
3
]作初等行变换,得到 [β
1
,β
2
,β
3
:α
1
,α
2
,α
3
] [*] 可见,当a≠4且a≠一2时,秩(β
1
,β
2
,β
3
)=3,α
1
,α
2
,α
3
均可由β
1
,β
2
,β
3
线性表示. 向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示,即方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
j
(j=1,2,3)无解.对增广矩阵[α
1
,α
2
,α
3
:β
1
,β
2
,β
3
]进行初等行变换,得到 [α
1
,α
2
,α
3
:β
1
,β
2
,β
3
][*] 可见,当a=1或a=一2时,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示.为保证α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,由前面讨论知a≠4且a≠一2. 因此当a=1时,向量组α
1
,α
2
,α
3
可由向量组β
1
,β
2
,β
3
线性表示,且β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/ajV4777K
0
考研数学二
相关试题推荐
证明:用二重积分证明
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组线性相关,但任意两个向量线性无关,求参数t.
随机试题
每分钟吸人肺泡的新鲜空气量乘以呼吸频率为最大吸气后,从肺内能呼出的最大气量称为
A.莫膜B.鞭毛C.普通菌毛D.性菌毛E.芽孢上述结构使细菌具有致育性的为
图14—1—2(a)所示结构体系为()。
在建设工程项目管理中,建设项目常用的组织结构模式包括( )。
客户进行理财规划的目标通常为财产的保值和增值向于实现客户财产的增值
(2012年)根据企业破产法律制度的规定,下列各项中,属于债权人会议职权的是()。
第四代计算机的主要元器件采用的是()。
中世纪时,人们的消息来源于口口相传,任何目击重要事件发生的人所提供的一手消息都被___________;书面的解释记录并不足以服人,因为无法对写下这些内容的人反复询问。这就解释了,为什么尽管15世纪时活字印刷在古登堡被发明,但报纸行业的发展还是如此____
__________反映了康有为早期的大同思想。
与十进制数873相等的二进制数是(1),八进制数是(2),十六进制数是(3),BCD码是(4)。
最新回复
(
0
)