设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). 证明:fn(x)=∫0xf0(t)(x-t)n-1dt(n=1,2,…);

admin2019-01-23  36

问题 设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).
证明:fn(x)=0xf0(t)(x-t)n-1dt(n=1,2,…);

选项

答案n=1时,f1(x)=∫0xf0(t)dt,等式成立; 设n=k时,fk(x)=[*]∫0xf0(t)(x—t)k-1dt, 则n=k+1时, [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/arM4777K
0

随机试题
最新回复(0)