首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明条件极值点的必要条件(8.9)式,并说明(8.9)式的几何意义.
证明条件极值点的必要条件(8.9)式,并说明(8.9)式的几何意义.
admin
2017-08-18
28
问题
证明条件极值点的必要条件(8.9)式,并说明(8.9)式的几何意义.
选项
答案
由所设条件,φ(x,y)=0在x=x
0
的某邻域确定隐函数y=y(x)满足y
0
=y(x
0
), 于是P
0
(x
0
,y
0
)是z=f(x,y)在条件φ(x,y)=0下的极值点[*]z=f(x,y(x))在x=x
0
取极值[*] [*]f’
x
(x
0
,y
0
)+f’
y
(x
0
,y
0
)y’(x
0
)=0 ① 又由φ(x,y(x))=0,两边求导得 φ’
x
(x
0
,y
0
)+φ’
y
(x
0
,y
0
))=0, 解得y’(x
2
)=一φ’
x
(x
0
,y
0
)/φ’
y
(x
0
,y
0
). ② 将②式代入①式得f’
x
(x
0
,y
0
)—f’
y
(x
0
,y
0
)φ’(x
0
,y
0
)/φ’
y
(x
0
,y
n
)=0. 因此[*] 在Oxy平面上看,φ(x,y)=0是一条曲线,它在P
0
(x
0
,y
0
)的法向量是(φ’
x
(P
0
),φ’
y
(P
0
)),而f(x,y)=f(x
0
,y
0
)是一条等高线,它在P
0
的法向量是(f’
x
(P
0
),f’
y
(P
0
)),(8.9)式表示这两个法向量平行,于是曲线φ(x,y)=0与等高线f(x,y)=f(P
0
)在点P
0
处相切.
解析
转载请注明原文地址:https://kaotiyun.com/show/cBr4777K
0
考研数学一
相关试题推荐
微分方程2x3y’=y(2x2一y2)的通解是____________.
没A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设f(x)在(一∞,+∞)有连续的导数,且f(0)=0,f’(0)=1,确定A后,求F’(x)并证明F’(x)在(一∞,+∞)连续.
设(X,Y)在区域D={(x,y)|x2+y2≤1,x≥0,y≥0)上服从均匀分布,令求(U,V)的概率分布;
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}上服从均匀分布,令Z=X—Y,求X与Y的边缘概率密度函数并判断随机变量X与y的独立性;
设两个总体分别为X~N(μ1,σ12)和y~N(μ2,σ22),先假设检验总体X的均值不小于总体y的均值,则检验假设为()
设随机变量X服从参数为1的指数分布,随机变量Y服从,且X与Y相互独立,令Z=X—Y,记fZ(z)为随机变量函数Z的概率密度函数,求E|X—Y|,D|X—Y|.
(2009年试题,22)袋中有1个红色球,2个黑色球与3个白球,现有放回地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球和白球的个数.求二维随机变量(X,Y)概率分布.
设随机变量X的概率密度函数为对X进行两次独立观察,其结果分别记为X1,X2,令求二维随机变量(Y1,Y2)的联合概率分布.
设随机变量X,Y独立同分N(μ,σ2),其联合密度函数f(x,y)在(2,2)处有驻点,且f(0,0)=,则(X,Y)服从的分布是_______.
随机试题
导致排卵的内分泌调节为排卵前血________峰的出现,其机制是________高峰对垂体、下丘脑的________反馈调节作用。
A.活检和手术标本B.淋巴结、肝、肺C.胸腔积液、腹水、脑脊液D.培养细胞E.外周血和胸腹水中的淋巴细胞的分离细胞穿刺法适合于
成人肺结核病最常见的类型是( )
1.5砖墙的厚度,应以计算规则所规定的()进行计算。
被誉为台湾八景中最佳的一景是()。
1940年8月20日,为粉碎敌人的“囚笼政策”,八路军在华北地区对日寇开始了一次规模最大、持续时间最长的战役,沉重打击了日本侵略者的嚣张气焰。这次战役是()。
根据法律规定,继承开始后,遗产处理前,继承人未作出任何表示,则()
在爱国主义与拥护祖国统一的一致性问题上,爱国与否是
在下列所有制经济中,属于按劳动力价值分配的经济成分是( )
包括
最新回复
(
0
)