首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
admin
2016-04-11
72
问题
设4元齐次线性方程组(I)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由已知,(I)的系数矩阵为 [*] 故(I)的基础解系可取为:(0,0,1,0),(一1,1,0,1). (2)有非零公共解. 将(Ⅱ)的通解代入方程组(I),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1) 满足方程组(I)(显然是(Ⅱ)的解),故方程组(I)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
本题(1)求基础解系属基本题目;而(2)主要考查齐次线性方程组通解的概念、两方程组公共解的概念及其求法.注意,寻求两方程组(I)与(Ⅱ)的公共解,也就是寻求它们的解集合的交集合中的向量,或者说在(Ⅱ)的解集合中寻找那些满足方程组(I)的解向量.
转载请注明原文地址:https://kaotiyun.com/show/ayw4777K
0
考研数学一
相关试题推荐
设u(x,y)有二阶连续偏导数,且du(x,y)=(ax+y)/(x2+y2)dx-(x-y+b)/(x2+y2)dy,则()
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
函数的麦克劳林公式中x4项的系数是__________.
设f(x)在[0,1]上可导,且f(0)=0,0<f’(x)<1,证明:
计算极限.
设积分dx收敛,则()
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设平面区域D由直线x=1,x—y=2与曲线y=围成,f(x,y)是D上的连续函数,则下列选项中不等于的是().
设X服从泊松分布,已知P(X=1}=2P{X=2},求EX,DX,EX2,P{X=3}.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使得
随机试题
行政立法的主体有()。
管理业务具有专门性、管理对象比较单一,直接行使政府某一方面行政权力的是()。
A.溶解吸收B.分离排出C.机化D.包裹钙化E.组织增生3.胃溃疡的主要愈合方式为
慢性支气管炎肺结核
起着始动生精作用的激素是()
施工图预算编制的关键在于()。
31.21×16+3.121×120+312.1×6.2的值是()。
在“三国故事会”活动课上,同学们讲了许多历史故事,下列奠定了三国鼎立基础的史实是()。
“活到老.学到老”是现代教育()特点的要求。
文化产品不同于一般产品,它直接作用于精神领域,关乎人的心灵世界,关乎民族的精神面貌,关乎社会的文明进步。对文化产品创作生产要进一步加强正确引导。导向正确了,文化就能健康发展,人民群众就能长期受益。本段文字的主旨是()。
最新回复
(
0
)