首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
admin
2016-04-11
64
问题
设4元齐次线性方程组(I)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由已知,(I)的系数矩阵为 [*] 故(I)的基础解系可取为:(0,0,1,0),(一1,1,0,1). (2)有非零公共解. 将(Ⅱ)的通解代入方程组(I),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1) 满足方程组(I)(显然是(Ⅱ)的解),故方程组(I)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
本题(1)求基础解系属基本题目;而(2)主要考查齐次线性方程组通解的概念、两方程组公共解的概念及其求法.注意,寻求两方程组(I)与(Ⅱ)的公共解,也就是寻求它们的解集合的交集合中的向量,或者说在(Ⅱ)的解集合中寻找那些满足方程组(I)的解向量.
转载请注明原文地址:https://kaotiyun.com/show/ayw4777K
0
考研数学一
相关试题推荐
设,则,I=∫01x2f(x)dx=________。
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最[*]
设y=f(x)是[0,∞)上单调增加的连续函数,f(0)=0,记它的反函数为x=f-1(y),a>0,b>0,令I=∫0af(x)dx+∫0bf-1(y)dy,则()
求极限.
设函数y=y(x)满足x=dt,x≥0若y=y(x),y=0及x=1所围图形为D,求D绕Y轴旋转一周所得旋转体的体积V
设Σ为锥面介于平面z=1和z=4之间的部分,则积分(x+y+z)dS=________.
过点P(1,1,1)且与直线L1:和直线L2:都平行的平面的方程为().
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:|x-a|
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
导出正态分布N(μ,δ2)的数学期望和方差.
随机试题
甲公司从2013年1月1日起对期末存货采用成本与可变现净值孰低计价,成本与可变现净值的比较采用单项比较法。该公司2013年12月31日X、Y、Z三种存货的成本分别为:30万元、25万元、34万元;X、Y、Z三种存货的可变现净值分别为:32万元、22万元、3
教学过程的一个必要环节,深刻领会知识并学以致用的必要前提是()
A.主动干预B.教育干预C.技术干预D.强制干预E.紧急处置给家长和儿童讲解交通法规属于预防意外伤害的()
该租赁合同的性质为()。若本案中双方未约定租赁期限,甲、乙双方又无法就租赁期限协议补充,下列关于合同解除的说法正确的是()。
编制预算时,SF6全封闭组合电器(GIS)安装高度在10m以上时,定额如何套用?
如果一家盈利上市公司的债权人转成了公司的股东,即实施了债转股,由此会使该公司()。
信赖利益( )履行利益是一项基本原则。
Document outputs are produced on(71), devices that produce text or images on paper.
A、Negotiatewithhisboss.B、Calmdownandwaitfortherighttime.C、Quithisjobandgetabetterone.D、Tryhardertobeprom
A、She’sunimpressedbywhatthemantoldher.B、Shedoubtsshecanaffordit.C、Shedoesn’tthinkit’ssuitableforher.D、She’s
最新回复
(
0
)