首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使=0.
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使=0.
admin
2019-08-23
96
问题
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使
=0.
选项
答案
令φ(χ)=f(χ)∫
χ
b
g(t)dt+g(χ)∫
a
χ
f(t)dt, φ(χ)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫
χ
b
g(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫
a
χ
f(t)dt] =f′(χ)∫
χ
b
g(t)dt+g′(χ)∫
a
χ
(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0, 从而就有∫
χ
b
g(t)dt>0,于是有[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/azA4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
随机试题
影响态度与品德学习的外部条件主要有()。
简述我国省级人民政府的职权。
《米龙老爹》的中心思想是()
下列哪项不属于药品不良反应监测工作程序()
A.HMG-CoA还原酶B.乙酰CoA羧化酶C.LCATD.ACATE.LPL胆固醇生物合成的限速酶
中华人民共和国成立以来,《中国药典》先后共颁布了
【背景资料】某建筑施工单位在新建办公楼工程施工前,按相关规定由项目技术负责人组织编制单位工程施工组织设计并包含各项基本内容。经项目负责人审批后报监理机构。在施工组织设计中,施工进度计划以时标网络图(时间单位:周)形式表示。在第5周末,施
担任科(局)级正职行政职务的人民警察可授予()至一级警司。
有无穷多解,则a=()。
民主与法治之间的矛盾是
最新回复
(
0
)