首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:线性方程组(Ⅰ)有解的充分必要条件是方程组
证明:线性方程组(Ⅰ)有解的充分必要条件是方程组
admin
2022-04-02
85
问题
证明:线性方程组(Ⅰ)
有解的充分必要条件是方程组
选项
答案
令A=[*]=(α
1
,α,…,α
n
),b=[*] 方程组(Ⅰ)可写为AX=b,方程组(Ⅱ)、(Ⅲ)可分别写为A
T
Y=0及[*]Y=0. 若方程组(Ⅰ)有解,则r(A)=[*]又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(Ⅲ)同解; 反之,若(Ⅱ)与(Ⅲ)同解,则r(A
T
)=[*]故方程组(Ⅰ)有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/b1R4777K
0
考研数学三
相关试题推荐
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
已知方程组有解,证明:方程组无解.
已知A可对角化,求可逆矩阵P及对角矩阵,使P-1AP=A
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
随机试题
我国对资本主义工商企业进行社会主义改造中,之所以要对民族资产阶级文行赎买政策,是因为
下列C++流的操作符中,能够设置浮点数精度的是
简述格式塔原则的规律。
A.拮抗作用B.牙齿黄染C.增加耳毒性D.增强骨髓抑制作用E.协同作用氯霉素与秋水仙碱合用()
下列()加工以后,不能再进行切割,需要选用定型产品或按尺寸定制。
某台车床有A、B、C三个组加工某一产品,三个组的产品都用直方图来表示分布,分布的类型为:A组:锯齿型;B组:标准型;C组:双峰班。根据资料可分析出:B组产品数据平均值与最大值和最小值的中间值()。
“因材施教”体现了人的身心发展的()。
红外线是太阳光线中众多不可见光线的一种,由德国科学家霍胥尔于1800年发现。它之所以不能被人看到是因为()。
中国民族资产阶级登上政治舞台的第一次表演是()
Itishardtoreconcilehissplendidspeeches______hisactualbehaviour.
最新回复
(
0
)