首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:线性方程组(Ⅰ)有解的充分必要条件是方程组
证明:线性方程组(Ⅰ)有解的充分必要条件是方程组
admin
2022-04-02
99
问题
证明:线性方程组(Ⅰ)
有解的充分必要条件是方程组
选项
答案
令A=[*]=(α
1
,α,…,α
n
),b=[*] 方程组(Ⅰ)可写为AX=b,方程组(Ⅱ)、(Ⅲ)可分别写为A
T
Y=0及[*]Y=0. 若方程组(Ⅰ)有解,则r(A)=[*]又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(Ⅲ)同解; 反之,若(Ⅱ)与(Ⅲ)同解,则r(A
T
)=[*]故方程组(Ⅰ)有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/b1R4777K
0
考研数学三
相关试题推荐
试证明函数在区间(0,+∞)内单调增加.
设矩阵A=,则A与B().
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
已知方程组有解,证明方程组无解.
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
随机试题
艺术品结构中的核心层次是
计量数据
职业品质是一个人在职业行为和作风中所表现出来的思想、认识、品性等的相对稳定的倾向和特征。下列选项中,属于优良职业品质的是
若函数f(x)在(a,b)内可导,且f(a)=f(b),则【】
骨骼肌纤维的横小管位于Z线水平,心肌纤维的横小管位于明暗带交界处。()
甲沟炎若不及时处理可能发生
心绞痛发作时,硝酸甘油的用法用量为
在城市规划中,对()的规定,对地价有重要的影响。
下列说法中正确的是()。按照我国《合同法》规定,一方故意提供虚假情况给对方造成损失的,应承担()责任。
Accordingtothepassage,developmentalistswouldagreewithwhichofthefollowingviews?Theauthor’smainpurposeinwriting
最新回复
(
0
)